初中数学试卷和答案?那么,初中数学试卷和答案?一起来了解一下吧。
此题问的有点模糊,可以理解为:人数不是一定的,意思是说,有一定数量的苹果,按每人5个来分,剩余1个,注意此时并不是全部人都分到苹果的,如此类推。
答案应该是11126个苹果了,我也是推出来的,语言难以表达,推理过程十分复杂。
首先可以先确定苹果数量的个位数字,如下
符合5的倍数+1的个位数字:1、6
符合6的倍数+2的个位数字:8、4、0、6、2
符合7的倍数+3的个位数字:0、7、4、1、8、5、2、9、6
可见同时满足3种情况的数字只有6,从而可确定苹果数量的个位数字是6。
如此类推,从个位数字、十位数字、百位数字……一直向前推理,特别前面的数字推理十分繁琐。
1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
答案:2元
2、假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
答案:先用5升壶装满后倒进6升壶里,
在再将5升壶装满向6升壶里到,使6升壶装满为止,此时5升壶里还剩4升水
将6升壶里的水全部倒掉,将5升壶里剩下的4升水倒进6升壶里,此时6升壶里只有4升水
再将5升壶装满,向6升壶里到,使6升壶里装满为止,此时5升壶里就只剩下3升水了
3、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。
答案:先称3只,再拿下一只,称量后算差。
4、有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背回家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
蕉?
答案:25根
先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。
5、一天有个年轻人来到王老板的店里买一件礼物,这件礼物成本是18元,售价是21元。 结果是这个年轻人掏出100元要买这件礼物。
王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。 但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。 现在问题是:王老板在这次交易中到底损失了多少钱 ?
答案:97元
6、一个四位数与它的各个位上的数之和是1972,求这个四位数
答案:因为是四位数,和是1972 所以这个四位数的千位上一定是1,因为它不能是0,也不能大于1.
所以这个数就是1xxx。
剩下三个数,即使是1972,9+7+2=18,18+1=19.所以百位上的数只能是9,因为是别的数是不可能得出19xx的。
然后设 个位为数字x,十位为数字y,x、y都为0~9的整数,
则有:1900+10y+x+x+y+10=1972则有11y+2x=62
x=(62-11y)/2 这样 把0~9的数放到y的位置,就发现 只能是y=4,x=9
所以就是1949
初二下学期数学期末考试
(时间:90分钟;满分:120分)
一. 选择题:(3分×6=18分)
1. 如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为(
)
2. 下图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是(
)
A. 1/6cm
B. 1/3cm
C. 1/2cm
D. 1cm
3. 下列命题为真命题的是(
)
A. 若x,则-2x+3<-2y+3
B. 两条直线被第三条直线所截,同位角相等
D. 全等图形一定是相似图形,但相似图形不一定是全等图形
5. 下图是初二某班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数)。已知该班只有五位同学的心跳每分钟75次,请观察下图,指出下列说法中错误的是(
)
A. 数据75落在第2小组
B. 第4小组的频率为0.1
D. 数据75一定是中位数
6. 甲、乙两人同时从A地出发,骑自行车到B地,已知AB两地的距离为30公里,甲每小时比乙多走3公里,并且比乙先到40分钟。设乙每小时走x公里,则可列方程为(
)
二. 填空题:(3分×6=18分)
7. 分解因式:x3-16x=_____________。
8. 如图,已知AB//CD,∠B=68o,∠CFD=71o,则∠FDC=________度。
9. 人数相等的甲、乙两班学生参加了同一次数学测验,班级平均分和方差如下:
10. 点P是Rt△ABC的斜边AB上异于A、B的一点,过P点作直线PE截△ABC,使截得的三角形与△ABC相似,请你在下图中画出满足条件的直线,并在相应的图形下面简要说明直线PE与△ABC的边的垂直或平行位置关系。
位置关系:____________
______________
__________
12. 在△ABC中,AB=10。
三. 作图题:(5分)
13. 用圆规、直尺作图,不写做法,但要保留作图痕迹。
小明为班级制作班级一角,须把原始图片上的图形放大,使新图形与原图形对应线段的比是2:1,请同学们帮助小明完成这一工作。
四. 解答题:(共79分)
14. (7分)请你先化简,再选取一个使原式有意义,而你又喜爱的数代入求值:
15. (8分)解下列不等式组,在数轴上表示解集,并写出它的整数解。
16. (8分)溪水食品厂生产一种果糖每千克成本为24元,其销售方案有以下两种:
方案一:若直接送给本厂设在本市的门市部销售,则每千克售价为32元,但门市部每月须上交有关费用2400元;
方案二:若直接批发给本地超市销售,则出厂价为每千克28元。
若每月只能按一种方案销售,且每种方案都能按月售完当月产品,设该厂每月的销售量为x千克。
(1)若你是厂长,应如何选择销售方案,可使工厂当月所获利润更大?
(2)厂长听取各部门总结时,销售部长表示每月都是采取了最佳方案进行销售的,所以取得了较好的工作业绩,但厂长看到会计送来的第一季度销售量与利润关系的报表(如下表)后,发现该表写的销售量与实际上交利润有不符之处,请找出不符之处,并计算第一季度的实际销售总量。
17. (8分)浩浩的妈妈在运力超市用12.50元买了若干瓶酸奶,但她在利群超市发现,同样的酸奶,这里要比运力超市每瓶便宜0.2元钱,因此,当第二天买酸奶时,便到利群超市去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多倍,问她第一次在运力超市买了几瓶酸奶?
18. (8分)未成年人思想道德建设越来越受到社会的关注。某青少年研究所随机调查了大连市内某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观。根据100个调查数据制成了频数分布表和频数分布直方图:
(1)补全频数分布表和频数分布直方图;表格中A=______,B=______,C=______
(2)在该问题中样本是________________________________________。
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议,试估计应对该校1000名学生中约多少学生提出这项建议?
19. (8分)(1)一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC=2.7米,CD=1.2米。你能帮他求出树高为多少米吗?
(2)在一天24小时内,你能帮助他找到其它测量方式吗(可供选择的有尺子、标杆、镜子)?请画出示意图并结合你的图形说明:
使用的实验器材:________________________________
需要测量长度的线段:________________________________
20. (8分)某社区筹集资金1600元,计划在一块上、下底分别为10米,20米的梯形空地上喷涂油漆进行装饰。如图,(1)他们在△AMD和△BMC地带上喷涂的油漆,单价为8元/m2,当△AMD地带涂满后(图中阴影部分)共花了160元,请计算涂满△BMC地带所需费用。(2)若其余地带喷涂的有屹立和意得两种品牌油漆可供选择,单价分别为12元/m2和10元/m2,应选择哪种油漆,刚好用完所筹集的资金?
21. (12分)探索与创新:
如图:已知平面内有两条平行的直线AB、CD,P是同一平面内直线AB、CD外一动点。(1)当P点移动到AB、CD之间,线段AC两点左侧时,如图(1),这时∠P、∠A、∠C之间有怎样的关系?
请证明你的结论:
(2)当P点移动到AB、CD之间,线段AC两点的右侧时,如图(2),这时∠P、∠A、∠C之间有怎样的关系?(不必证明。)答:
(3)随着点P的移动,你是否能再找出另外两类不同的位置关系,画出相应的图形,并写出此时∠P、∠A、∠C之间有怎样的关系?选择其中的一种加以证明。
实践与应用:
将一矩形纸片ABCD(如图)沿着EF折叠,使B点落在矩形内B1处,点C落在C1处,B1C1与DC交于G点,根据以上探索的结论填空:
22. (12分)利用几何图形进行分解因式,
初二升初三数学测试题
一、选择题(每小题有且只有一个答案正确,每小题4分,共40分)
1、如图,两直线a∥b,与∠1相等的角的个数为()
A、1个 B、2个 C、3个 D、4个
2、不等式组的解集是()
A、B、C、D、无解
3、如果,那么下列各式中正确的是( )
A、B、C、D、
4、如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的的判定定理的简称是()
A、AASB、ASAC、SASD、SSS
5、已知一组数据1,7,10,8,x,6,0,3,若=5,则x应等于()
A、6B、5 C、4D、2
6、下列说法错误的是()
A、长方体、正方体都是棱柱;B、三棱住的侧面是三角形;
C、六棱住有六个侧面、侧面为长方形;D、球体的三种视图均为同样大小的图形;
7、△ABC的三边为a、b、c,且,则()
A、△ABC是锐角三角形; B、c边的对角是直角;
C、△ABC是钝角三角形; D、a边的对角是直角;
8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()
A、中位数;B、平均数; C、众数;D、加权平均数;
9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按照相同的顺序,依次标有1, 2,3,4,5,6这六个数字,并且把标有“6”的面都放在左边,那么它们底面所标的3个数字之和等于()
A、8B、9C、10D、11
10、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()
二、填空题(每小题4分,共32分)
11、不等式的解集是__________________;
12、已知点A在第四象限,且到x轴,y轴的距离分别为3,5,则A点的坐标为_________;
13、为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指________;
14、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下的8人一共得了300分,则中位数是_____________。
15、如图,已知∠B=∠DEF,AB=DE,请添加一个条件使△ABC≌△DEF,则需添加的条件是__________;
16、如图,AD和BC相交于点O,OA=OD,OB=OC,若∠B=40°,∠AOB=110°,则∠D=________度;
17、弹簧的长度y(cm)与所挂物体的质量x (kg)的关系是一次函数,
图象如右图所示,则弹簧不挂物体时的长度是___________cm;
第15题图第16题图第17题图
18、如下图所示,图中是一个立体图形的三视图,请你根据视图,说出立体图形的名称:
对应的立体图形是________________的三视图。
三、解答题(共78分)
19、(8分)解不等式,并把解集在数轴上表示出来。
20、(8分)填空(补全下列证明及括号内的推理依据):
如图:已知:AD⊥BC于D,EF⊥BC于F,∠1=∠3,
求证:AD平分∠BAC。
答案:
一、选择题
1 C2 A3 D 4 A5B6 B 7 D8 C9 A10 C
二、填空题
11、X>212、(5,-3) 13、某校初三年级400名学生体重情况的全体14、80分15、BC=EF
16、80 17、918、四菱形或五面体
三、解答题
19、解:
)
20、证明:∵AD⊥BC,EF⊥BC于F(已知)
∴AD∥EF(同位角相等,两直线平等或在同一平面内,垂直于同一条干线的两条直线平行)
∴∠1=∠E(两条直线平行,同位角相等)
∠2=∠3(两条直线平行,内错角相等)
又∵∠3=∠1(已知)
∴∠1=∠2(等量代换)
∴AD平分∠BAC(AD平分∠BAC∵∠1=∠2,AD为∠BAC平分线)
你好
1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
答案:2元
2、假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
答案:先用5升壶装满后倒进6升壶里,
在再将5升壶装满向6升壶里到,使6升壶装满为止,此时5升壶里还剩4升水
将6升壶里的水全部倒掉,将5升壶里剩下的4升水倒进6升壶里,此时6升壶里只有4升水
再将5升壶装满,向6升壶里到,使6升壶里装满为止,此时5升壶里就只剩下3升水了
3、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。
答案:先称3只,再拿下一只,称量后算差。
4、有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背回家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
蕉?
答案:25根
先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。
数学辅导团队 为您解答
以上就是初中数学试卷和答案的全部内容,.。