当前位置: 首页 > 所有学科 > 数学

七年级人教版数学下册,新初一数学下册

  • 数学
  • 2024-11-19

七年级人教版数学下册?人教版数学七年级下:相交线与平行线、实数、平面直角坐标系、二元一次方程、不等式与不等式组。你问到的部分应该是属于实数部分,平方根,立方根和实数。一个正数的平方根有两个,例如25的平方根是±5其中我们把正数的叫做算数平方根。那么,七年级人教版数学下册?一起来了解一下吧。

七年级数学最新人教版电子

教师可以从学生的生活经验视角去解读人教版七年级数学教材;教材目录主要是什么知识呢?下面我给大家分享一些人教版七年级数学下册的目录,大家快来跟我一起欣赏吧。

人教版七年级数学下册课本目录

第五章相交线与平行线

5.1相交线

观察与猜想看图时的错觉

5.2平行线及其判定

5.3平行线的性质

信息技术应用探索两条直线的位置关系

5.4平移

数学活动

小结

复习题5

第六章实数

6.1平方根

6.2立方根

6.3 实数

阅读与思考为什么√2不是有理数

数字活动

小结

复习题6

第七章平面直角坐标系

7.1平面直角坐标系

阅读与思考用经纬度表示地理位置

7.2坐标方法的简单应用

数学活动

小结

复习题7

第八章二元一次方程组

8.1二元一次方程组

8.2消元——解二元一次方程组

8.3实际问题与二元一次方程组

8.4三元一次方程组的解法

阅读与思考一次方程组的古今表示及解法

数学活动

小结

复习题8

第九章不等式与不等式组

9.1不等式

阅读与思考用求差法比较大小

9.2一元一次不等式

9.3一元一次不等式组

数学活动

小结

复习题9

第十章数据的收集、整理与描述

10.1统计调查

实验与探究瓶子中有多少粒豆子

10.2直方图

信息技术应用利用计算机画统计图

10.3课题学习 从数据谈节水

数学活动

小结

复习题10

部分中英文词汇索引

人教版七年级数学下册整式的运算知识要点

一、整式

1、单项式:表示数与字母的积的代数式。

七年级下册数学教材电子版

人教版初一七年级下册数学相交线与平行线易错题总结

相交线与平行线是初一数学的重要章节。在学习过程中,同学们经常会遇到一些易错点。以下总结了相交线与平闷敏行线的易错题,希望能够帮助大家更好地理解和掌握陵桐这些知识点。

易错点1:相交线与平行线的定义与识别

对于相交线与平行线的概念,一些同学可能会混淆。相交线指的是两条直线在某一点相交;而平行线则是指两条直线在同一平面内不相交。在解题过程中,要明确区分这两种关系。

易错点2:平行线的性质和判定

在判定两条直线是否平行时,一些同学可能会忽视一些重要的性质,如平行线间的距离相等、同位角相等、内错角相等、同旁内角互补等。正确理解和应用这些性质,对于解题至关重要。

易错点3:相交线与平行线的性质应用

在解题时,正确应用相交线与平行线的性质,如角的关系、线段的比例、面积的计算等,对于得到正确答案非常重要。有些同学在应用这些性质时容易出错,需要多加练习。

易错点4:几何证明题中的陷阱

在涉及几何证明题时,一些同学可能会忽略某些细节蚂汪枝,如对齐条件、边界条件等,导致证明过程中的错误。在证明过程中,要仔细分析题目要求,确保每一步推导都符合几何原理。

易错点5:图形识别与操作

在解决相交线与平行线相关的问题时,图形的识别和操作能力也非常重要。

2024七下数学人教版目录

七年级数学下册学什么内容

第五章:相交线与平分线

第六章:平面直角座标系

第七章:三角形

第八章:二元一次方程组

第九章:不等式与不等式组

第十章:资料的收集、整理与描述

有什么问题可以问我。

七年级数学下册第一章内容

全等三角形 重点:1.4与1.5合订 1,了解全等三角形的概念,会用叠合等方法判定是否全等 2,了解全等三角形的概念 3,探索并掌桥闹握2个三角形全等的条件 4,了解三角形的稳定性 5,会用全等三角的性质判定角之间线段之间的互相关系 总结:1.4全等三角形的对应边相等,对应角相等 1.5重点:1,三边对应响等的2个三角形全等,简称SSS或边边边 2,有一个角和夹这个角的两边对应相等的2个三角形全等,简称SAS或边角边 3,线段垂直平分线上的点到线段两端点的距离相等 4,有两个角呵这两个角对应相等的两个三角形全等,简称ASA或角边角 5,两个角呵其中一角的对应相等的两个三角形全等,简称角角边或AAS 6,角平分见上的点到角两边的距离相等 1.6 重点:1,了解线段的垂直平分线的概念,了解线段的垂直平分线的点到线段两段的距离相等 2,了解角平分线上的点到角两边的距离相等 3,会用直尺呵圆规做角平分线呵线段的垂直平分线。

人教版七年级数学知识点归纳

人教版数学七年级下册

人教版数学橡模七年级下:

相交线与平行线、实数、平面直角坐标系、二元一次方程、不等式与不等式组。

你问到的部分应该是属于实数部分,平方根,立方根和实数。

一个正数的平方根有两个,例如25的平方根是±5其中我们把正数的叫做算数平方根。

平方根的定义:若x²=a,则x为a 的平方根

若2²=4,2是4的平方根,(-2)²=4,-2是4的平方根

算术平方根的定义:一个非负数的正的平方根叫做它的算术平方根

如:轮如灶2和-2都是4的平方根,而2是4的算术平方根.

扩展资料:

如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式。

即:若x²=a,则±√a叫做a的平方根,记作x=±√a。其中a叫被开方数。其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:

被开方数可以是数 ,也可以是代数式。被开方数为正或0的,其平方根为腊扮实数;被开方数为负的,其平方根为虚数。

人教版七年级下册数学目录

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分行胡线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的唯蔽判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四指带州边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆.

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h 15

以上就是七年级人教版数学下册的全部内容,人教版数学知识点 单项式 ①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。③一个单项式中,所有字母的指数和叫做这个单项式的次数。

猜你喜欢