当前位置: 首页 > 所有学科 > 数学

2017高考数学真题卷,2017年高考题数学

  • 数学
  • 2023-09-19

2017高考数学真题卷?www.ks5u.com2017年普通高等学校招生全国统一考试(全国卷3)理科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,那么,2017高考数学真题卷?一起来了解一下吧。

2017年高考题全国一卷数学答案解析

2017年高考理科数学轿碰巧全国卷1试题内

容及参考答案,适用地区:河南、河北、山吵禅西、江西、湖北闭键、湖南、广东、安徽、福建

2017高考数学二卷

你答案错了。

|3cosa+4sina-a-4|max=17,则 -17=<3cosa+4sina-a-4<=17, 所以当取最大值17时, 3cosa+4sina应取最大值5, 5-a-4=17, 得庆胡源a=-16, 但此时我们不知道3cosa+4sina-a-4 最小值是否会小于-17,代入可知,3cosa+4sina-a-4在a=-16 时的誉态最小值为7.符合题意。同理取最小值-17时,3cosa+4sina应取最小值 -5,-5-a-4=-17,做大得a=8. 此时最大值为-7。符合题意。 所以a为8 或 -16.

18和-26 是由于没有考虑绝对值内取得最大(小)值时,参数值也应该相对应的去最大(小)值。将18,和-26,代入即可得到绝对值的最大值是27.而非17。

2017年数学高考试卷

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ

20.(12分)

已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点烂启且与C相交于A,拿世B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae²^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选消历肢考题:共10分。

2017年高考数学理科全国一卷

com/zhidao/wh%3D450%2C600/sign=4dd9327da2d3fd1f365caa3e057e0929/902397dda144ad3496d026d4daa20cf431ad8572.jpg"

2017年高考题数学

由前面推导可知,即由题设可知根的判别式贺庆=16(4K^2-m^2+1)>0,后面又禅握握求得k=-(m+1)/2

这样将k代入进去,4K^2-m^2+1>0

4ⅹ[-(m+1)/2]^2-m^2+1>0

化简得2m+2>0得m>-1

所以当且皮仔仅当m>-1时,根的判别式﹥0就是这样得来的。

以上就是2017高考数学真题卷的全部内容,(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网 (2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件。

猜你喜欢