暑期升级训练答案数学八下?《暑假乐园》(6)答案 1-8: CCCBBABC 9:1.6,26;10:8.75;11:∠A=∠A,∠AFE=∠B, ∠AEF=∠C。12:7;13:6.4;14: 8:5;15: 48;16: 6, 4.8, 8.64。那么,暑期升级训练答案数学八下?一起来了解一下吧。
一提到暑假作业,大家一定都很发愁呢,影响我们快乐的心情了~但是大家还是要完成暑假作业的。下面是我为大家收集的关于人教版数学八年级暑假作业答案五篇2021。希望可以帮助大家。
人教版数学八年级暑假作业答案篇一
(一)基本概念:1、离散,2、极差,3、值,最小值,4、大,小,一致,
作业:1、4973850,2、32,3、-8,4、-2或8,5、4,6、D,7、D,8、3040,9、13,10、16
(二)
一,知识回顾(1)平均数A:40.0B:40.0极差A.4B:0.4(2)不能二,基本概念,略三,
例题分析:方差,A:0.012B:0.034标准差,略A更稳定四,
作业:(1)B(2)B(3)C(4)8(5)200,10(6)100(7)方差:甲0.84乙0.61所以乙更稳定
(三)
1、12;2、①,②,③;3、2;4、;5、2,;6、100;7、乙;8、乙;9、4、3;10、0;11、C;12、C;13、C;14、D;15、B;16、A;17、B;18、C;19、C;20、C;21、(1)A:极差8,平均数99,方差6.6;B:极差9,平均数100,方差9;(2)A;22、(1)甲组及格率为0.3,乙组及格率为0.5,乙组的及格率高;(2)甲组方差为1,乙组方差为1.8,甲组的成绩较稳定;23、(1)甲班的优秀率为60℅,乙班的优秀率为40℅;(2)甲班的中位数为100,乙班的中位数为97;(3)估计甲班的方差较小;(4)根据上述三个条件,应把冠军奖状发给甲班。
很多学生到了 八年级 数学成绩开始下降,其实很大一部分原因是没有掌握好课本的基础知识。下面森橡颂是我整理的八年级下册数学测试卷及答案解析,欢迎阅读分享,希望对大家有所帮助。
八年级下册数学测试卷及答案
一、选择题:
1.下列各式从左到右,是因式分解的是()
A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1
C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2
【考点】因式分解的意义.
【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用排除法求解.
【解答】解:A、是多项式乘法,不是因式分解,故本选项错误;
B、结果不是积的形式,故本选项错误;
C、不是对多项式变形,故本选项错误;
D、运用完全平方公式分解x2﹣4x+4=(x﹣2)2,正确.
故选D.
【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.
2.下列四个图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、不是轴对称图形,是中心对称图形;
B、是轴对称图形,也是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选B.
【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3.下列多项式中不能用平方差公式分解的是()
A.a2﹣b2B.﹣x2﹣y2C.49x2﹣y2z2D.16m4n2﹣25p2
【考点】因式分解﹣运用公式法.
【分析】能用平方差公式分解的式子的特点是:两项都是平方项,符号相反.
【解答】解:A、符合平方差公式的特点;
B、两平方项的符号相同,不符和平方差公式结构特点;
C、符合平方差公式的特点;
D、符合平方差公式的特点.
故选B.
【点评】本题考查能用此郑平方差公式分解的式子的特点,两平方项的符号相反是运用平方差公式的前提.
4.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()
A.x>0B.x<0C.x<2D.x>2
【考点】一次函数与一元一次不等式.
【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.
【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,
所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.
故选C.
【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.
5.使分式有意义的x的值为()
A.x≠1B.x≠2C.x≠1且x≠2D.x≠1或x≠2
【考点】分式有意义的条件.
【分析】根据分式有意义,分母不等于0列不等式求解即可.
【解答】解:由题意得,(x﹣1)(x﹣2)≠0,
解得x≠1且x≠2.
故选C.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分子为零且分母不为零.
6.下列是最简分式的是()
A.B.C.D.
【考点】最简分式.
【分析】先将选项中能化简的式子进行化简,不能化简的即为最简分式,本题得以解决.
【解答】解:,无法化简,,,
故选B.
【点评】本题考查最简分式,解题的关键是明确最简分式的定义.
7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()
A.6B.7C.8D.9
【考点】等腰三角形的判定.
【专题】分类讨论.
【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【解答】解:如上图:分情况讨论.
①AB为等腰△ABC底边时,符合条件的C点有4个如誉;
②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
8.若不等式组的解集是x<2,则a的取值范围是()
A.a<2B.a≤2C.a≥2D.无法确定
【考点】解一元一次不等式组.
【专题】计算题.
【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.
【解答】解:由(1)得:x<2
因为不等式组的解集是x<2
∴a≥2
故选:C.
【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
9.下列式子:(1);(2);(3);(4),其中正确的有()
A.1个B.2个C.3个D.4个
【考点】分式的基本性质.
【分析】根据分式的基本性质作答.
【解答】解:(1),错误;
(2),正确;
(3)∵b与a的大小关系不确定,∴的值不确定,错误;
(4),正确.
故选B.
【点评】在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.
10.某煤矿原计划x天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()
A.==﹣3B.﹣3
C.﹣3D.=﹣3
【考点】由实际问题抽象出分式方程.
【分析】设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,等量关系为:原计划工作效率=实际工作效率﹣3,依此可列出方程.
【解答】解:设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,
根据题意得,=﹣3.
故选D.
【点评】本题考查由实际问题抽象出分式方程,关键设出天数,以工作效率作为等量关系列方程.
二、填空题:
11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1).
【考点】提公因式法与公式法的综合运用.
【分析】把(x﹣y)看作一个整体并提取,然后再利用平方差公式继续分解因式即可.
【解答】解:x2(x﹣y)+(y﹣x)
=x2(x﹣y)﹣(x﹣y)
=(x﹣y)(x2﹣1)
=(x﹣y)(x+1)(x﹣1).
故答案为:(x﹣y)(x+1)(x﹣1).
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
12.当x=﹣2时,分式无意义.若分式的值为0,则a=﹣2.
【考点】分式的值为零的条件;分式有意义的条件.
【分析】根据分母为零,分式无意义;分母不为零,分式有意义,分子为零分母不为零分式的值为零,可得答案.
【解答】解:∵分式无意义,
∴x+2=0,
解得x=﹣2.
∵分式的值为0,
∴,
解得a=﹣2.
故答案为:=﹣2,﹣2.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义?分母为零;分式有意义?分母不为零;分式值为零?分子为零且分母不为零.
13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6.
【考点】线段垂直平分线的性质.
【专题】计算题;压轴题.
【分析】运用线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表示出线段之间的数量关系,联立关系式后求解.
【解答】解:∵DE是BC边上的垂直平分线,
∴BE=CE.
∵△EDC的周长为24,
∴ED+DC+EC=24,①
∵△ABC与四边形AEDC的周长之差为12,
∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,
∴BE+BD﹣DE=12,②
∵BE=CE,BD=DC,
∴①﹣②得,DE=6.
故答案为:6.
【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
14.若4a4﹣ka2b+25b2是一个完全平方式,则k=±20.
【考点】完全平方式.
【分析】根据4a4﹣ka2b+25b2是一个完全平方式,利用此式首末两项是2a2和5b这两个数的平方,那么中间一项为加上或减去2a2和5b积的2倍,进而求出k的值即可.
【解答】解:∵4a4﹣ka2b+25b2是一个完全平方式,
∴4a4﹣ka2b+25b2=(2a2±5b)2,
=4a4±20a2b+25b2.
∴k=±20,
故答案为:±20.
【点评】此题主要考查的是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣.
【考点】扇形面积的计算.
【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.
【解答】解:连接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,点O为AB的中点,
∴OC=AB=1,四边形OMCN是正方形,OM=.
则扇形FOE的面积是:=.
∵OA=OB,∠AOB=90°,点D为AB的中点,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
则在△OMG和△ONH中,
,
∴△OMG≌△ONH(AAS),
∴S四边形OGCH=S四边形OMCN=()2=.
则阴影部分的面积是:﹣.
故答案为:﹣.
【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.
三、解答题
16.(21分)(2016春?成都校级期中)(1)因式分解:2x2y﹣4xy2+2y3;
(2)解方程:=+;
(3)先化简,再求值(﹣x+1)÷,其中;
(4)解不等式组,把解集在数轴上表示出来,且求出其整数解.
【考点】分式的化简求值;提公因式法与公式法的综合运用;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;一元一次不等式组的整数解.
【分析】(1)先提公因式,然后根据完全平方公式解答;
(2)去分母后将原方程转化为整式方程解答.
(3)将括号内统分,然后进行因式分解,化简即可;
(4)分别求出不等式的解集,找到公共部分,在数轴上表示即可.
【解答】解:(1)原式=2y(x2﹣2xy+y2)
=2y(x﹣y)2;
(2)去分母,得(x﹣2)2=(x+2)2+16
去括号,得x2﹣4x+4=x2+4x+4+16
移项合并同类项,得﹣8x=16
系数化为1,得x=﹣2,
当x=﹣2时,x+2=0,则x=﹣2是方程的增根.
故方程无解;
(3)原式=[﹣]?
=?
=?
=﹣,
当时,原式=﹣=﹣=﹣;
(4)
由①得x<2,
由②得x≥﹣1,
不等式组的解集为﹣1≤x<2,
在数轴上表示为
.
【点评】本题考查的是分式的化简求值、因式分解、解一元一次不等式组、在数轴上表示不等式组的解集,考查内容较多,要细心解答.
17.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;
(2)画出△A1B1C1以点O为旋转中心、顺时针方向旋转90度的△A2B2C2,并求出点C1经过的路径的长度.
【考点】作图﹣旋转变换;作图﹣平移变换.
【分析】(1)分别作出点A、B、C沿y轴正方向平移3个单位得到对应点,顺次连接即可得;
(2)分别作出点A、B、C以点O为旋转中心、顺时针方向旋转90度得到对应点,顺次连接即可得,再根据弧长公式计算即可.
【解答】解:(1)如图,△A1B1C1即为所求作三角形,点B1坐标为(﹣2,﹣1);
(2)如图,△A2B2C2即为所求作三角形,
∵OC==,
∴==π.
【点评】本题考查了平移作图、旋转作图,解答本题的关键是熟练平移的性质和旋转的性质及弧长公式.
18.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
【考点】分式方程的应用.
【专题】应用题.
【分析】根据题意,设科普和文学书的价格分别为x和y元,则根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列方程组即可求解.
【解答】解:设科普和文学书的价格分别为x和y元,
则有:,
解得:x=7.5,y=5,
即这种科普和文学书的价格各是7.5元和5元.
【点评】本题考查分式方程的应用,同时考查学生理解题意的能力,关键是根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列出方程组.
19.已知关于x的方程=3的解是正数,求m的取值范围.
【考点】解分式方程;解一元一次不等式.
【专题】计算题.
【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
【解答】解:原方程整理得:2x+m=3x﹣6,
解得:x=m+6.
因为x>0,所以m+6>0,即m>﹣6.①
又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠﹣4.②
由①②可得,m的取值范围为m>﹣6且m≠﹣4.
【点评】本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m≠4,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.
20.(12分)(2016?河南模拟)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
【考点】四边形综合题.
【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.
【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;
【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.
【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
【类比引申】∠BAD=2∠EAF.
理由如下:如图(2),延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.
【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=80米.
根据旋转的性质得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即点G在CD的延长线上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40
故∠HAF=45°,
∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°
从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.
【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
八年级数学怎么快速提高
一、做好数学课前预习工作
很多学生在数学课前预习的习惯,这样会造成课上学的不太懂、课后翻书找不到的这样的情况。
弹指一挥间,美好的暑假生活即将过去。下面是由我为大家整理的“八年级暑假作业数学答案(北师大版)”,欢迎大家阅读,仅供大家参考。
八年级暑假作业数学答案(北师大版)【一】
《暑假乐园》(1)答案:
1-8、DABDDDCA;9、1,2,3;10、a≤b;11、a <4且a≠0;12、a>-1;13、7;
14、(1)x<2,(2)x<-3;15、a≤ ;16、1;17、18厘米;18、21。
21、18题;22、(1)a=0.6 ,b=0.4;(2)35%到50%之间(不含35%和50%)。
暑返消正假乐园(2)答案:
1:D 2:A 3:A 4::A 5:C 6:C
7:-2 8:1,9:x=2,10:x.≥0且x≠1,11、略,12、略,13、2-a,14、a-3、1,15、(1)x=4,(2)x=-2/3,16、B,17、C,18、2,19、-1,20、k=1、4、7,21、互为相反数,22、47,23、375,24、略。
《暑假乐园》(3)答案
1,-1 2,y=2/x 3,B 4,D 5,B 6,C 7,B 8,1/2 9,2∏ 10, B 11,(1)y=4-x (2)略 12,(1)x =1 m=1(2)与x轴交点(-1,桥早0),与y轴交点(0,1) 13,x 0) (2)3000 (3)6000
《暑假乐园》(4)答案
(四)1、B; 2、B ; 3、B; 4、A; 5、B; 6、B; 7、D; 8、D; 9、≠5;=—1; 10、t≤—1;11、—6;12、减小;13、a—3;14、3和4;15、19; 16、3或4/3;17、x≥1; 18、x<1;19、x—3,原式=- ;20、略;21、x=4;22、y=-x+2,6;23、略,BD=6
《暑假乐园》(5)答案
(五)1.4:3 2.6 3.3858 4.18 5.1:9 6.18 7.①④ 8.∠A=∠D。
初二暑假作业数学答案握链坦(全部)!!!
一:DCADCB
二:
7.(!)25(2)根号二2(3)26(4)9倍根号2(5)3分之根号3k
(6)60
8.6cm48cm
9.169
10.3或7
11.10步
12.25cm
一:BDBCAB
二:
7.90 度
8.5
9.84.8
10.120cm
11.17cm
12.(1)8485
(2)以这些数为边的都是三角形
三角形的最短直角边的平方等于斜边与直角边的和
(三)
一:BBBCBCBC
二:
9.(1)12
(2)16
(3)147倍根号3
(4)5倍根号2
10.60/13
11.30
12.S1=s2=s3
13.5
14.6
15.根号3:2
16.2≦x≦6
(四)
一:BDBDBC
二:
7.8 6 70度 110度
8.8cm12cm
9.55度 125度 125度
10.12
11.1.5 37.5 7.5
12.26度120度
13.16
14.20
(五)
一:BCCDCA
二:
7.86
8. 2
9. 两□ABCD AB∥DCAB =BC
□CDEF AB=CD=EFDE=CF
10.DE=BF
(六)
一:DBBCCA
二:
7. 208.6
8. 112.5
9. 5cm 2分之5倍根号3cm
10. 10cm
11. 根号5cm3 分之根号5cm
12. 8cm2
13. 45度
14. 7.5m
15. 根号5cm
16. 24cn平方
(七)
一:DCDDADCC
二:
9. 40度
10.2分之17
11. 25倍根号3
12. 2.5
13. 1 2
14. 44
15.正方型
16. 矩形
17. 4
18. 4倍根号2
(八)
一:DBBDBCBB
二:
9.3 0
10. 39cm平方
11. 1<x<7
12. 5倍根号3cm
13.30cm
14.7cm
15. 8倍根号3
16. 84cm平方
17.6.5
18.7或1
(九)
一:DCADBCCA
二:
9. 正方形
10. AD=BC
11. 平分
12. 30
13. 1 4 5
14. 2
(十)
一:BBBCABBC
二:
9. 13cm
10.18倍根号3
11. 12cm 13倍根号3cm 72倍根号3
12.2倍根号2 4
13. 6
14. 15度 39度
15. ∠A=90度AB=AD
16. 8或2之8倍根号3
(十一)
一、BDCDCCAD
二、9. 0.518-1/3 -1/3
10. (X+根号三)(X-根号三)
11.大于等于负二分之一
12.3
13.X≤2
14.1
15.0
16.-37
(十二)
一、CCBDCA
二、7.X≠9
8.-m
9.X≥1
10.相等
11.1
12. 根号15+三倍根号五+三分之十六倍根号三
(十三)
一、CBBDAC二、7.x<5
8.2-a
9.-10
10.二倍根号二0
11.12
12.7
13.1
14. a+b+c
(十四唤亏)
一、CCCABD
二、7.x²-8x-4=0 1-8-4
8.=1 ≠1
9.3,4,5
10.p=-1q=-6
11.负三分之二或1
12.三分之四
(十五)
一、BCACCD
二段桐、7.±5
8.±a分之根号ac
9.a≥0
10. 0
11.=4 >4
12.-1/2
(十六)一、CDABBA
二、4/92/3 二倍根号三x根号二
8.≤4/9
9.(2a+根号五)/2
10.2或-4
11.19
12.0
(十柒)
一、CCACCC
二、7.54cm²
8.11,9或-11,-9
9.10%
10.1.21a元
11.(am+bn)/(m+n)
12.2
(十八)一、CCABCD
二、7. x1=0,x2=5
8. -11
9.1
10.1/8
11.根号三
12.10%
(十九)一、 DBCABC
二、7. 14.96
8.10
9.80
10.85.3
11.相等
12.10
(二十)一、DBBBCC
二、7.数据的波动
8. 7℃
9. 2
10. 2
11.乙
12.3
(二十一)一、DBDCCD
二、7.6
8.16
9.88.5;89
10.9.388
11.10110100
12.7
13. 2
14.乙
15. 20073 146
(二十二)一、ABCAAC
二、7.x²-9=0
8.乙
9.根号二+根号三
10.18cm
11.二倍根号三或根号三
12.3
(二十三)一=CDCCCB
二、7. 词组数据的个数为10个,平均数唯15
8. 1
9.30°
10 6或10或12
11. 负根号五
12.∵AB∥CD角A=角C ∴AD=BC
同学们,这一年的暑假即将到来,大家别只顾着玩,记得认真做好自己的暑假作业,并对一下答案,看看自己哪里需要重点学习一下。下面是我给大家带来的2022八年级下册数学暑假作业答案大全,以供大家参考,我们一起来看看吧!
▼目录 ▼
★ 八 年 级下 册数 学暑 假作 业答 案 ★
★ 八年 级数 学暑 假作 业答 案大 全 ★
★ 数 学新学 期学 习计 划 ★
▼ 八年级下册数学暑假作业答案
(一)
1.B2.B3.D4.B5.C6.C7.408.平行9.a=c>b
10.13611.内错角相等,两直线平行;3;4;两直线平行,同位角相等12.(1)略
(2)平行,理由略13.略14.(1)∠B+∠D=∠E(2)∠E+∠G=∠B+∠F+∠D(3)略
(二)
1.C2.B3.D4.D5.D6.C7.50°或65°8.49.平行
10.9厘米或13厘米11.60°12.13.略14.略15.略
16.(1)15°(2)20°(3)(4)有,理由略
(三)
1.20°2.厘米3.84.4.85.366.37.D8.C
9.B10.B11.略12.FG垂直平分DE,理由略13.0.5米14.同时到达,理由略15.(1)城市A受影响(2)8小时
<<<
▼ 八年级数学暑假作业答案大全
(一)
1.B2.A3.C4.A5.C6.B7.D8.(1)<(2)>
(3)≥(4)<(5)<9.410.a
14.-2,-115.16.b<0
(二)
1.D2.C3.C4.C5.n≤76.238.
9.0≤y≤510.11.x3(3)无解
13.1,214.34,1615.(1)9≤m<12(2)9
(三)
1.C2.B3.C4.18≤t≤225.4.0米/秒6.5,7,9
7.8.大于20000元9.2210.4人,13瓶
11.当旅游人数为10~15人时选择乙旅行社;当旅游人数为16人时两家旅行社都可选择;当旅游人数为17~25人时选择甲旅行社12.(1)35元,26元(2)有3种方案;购买文化衫23件,相册27本的方案用于购买教师纪念品的资金更充足13.略
(四)
1.C2.C3.C4.C5.D6.C7.为任何实数;为08.a<-1
9.南偏西40°距离80米10.(6,6),(-6,6),(-6,-6),(6,-6)11.5或-1
12.(5,2)13.(x,6)(-3≤x≤2)14.略15.(-2,0)或(6,0)16.等腰直角三角形,917.略18.略
<<<
▼ 数学新学期学习计划
新的学期即将到来,为了使下学期的学习成绩进步、各科成绩优异、不偏科,在此做新学期的打算,
一、做好预习。
以上就是暑期升级训练答案数学八下的全部内容,则em=am/ad*bd,mh=am/ad*dc ∴em+mh=am/ad*bd+am/ad*dc=am/ad*(bd+dc)=am/ad*bc=8/20*10=4 则eh=em+mh=4 又md=ad-am=20-8=12 ∴矩形efgh的面积=md*eh=12*4=48(cm^2)练习八 aadcb。