数学八年级上册答案?1.(1)x=65;(2)x=60; (3)x=95.2.六边形3.四边形 人教版八年级上册数学书答案(二) 第28页 1•解:因为S△ABD=1/2BD.AE=5 cm²,AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线,那么,数学八年级上册答案?一起来了解一下吧。
#初二#导语: 数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。以下是 考 网整理的数学八年级上册作业本答案漏亏苏教版【三篇】,希望对大家有帮助。
1.1认识三角形
1、(1)△ABD,△ADC,△ABC
(2)∠B,∠BAD,∠ADB;AB,AD,BD
(3)85,55
2、(1)<
(2)>
3、(1)2
(2)3
(3)1
4、(1)能
(2)不能
(3)不能
(4)能
5、有两种不同选法:4cm,9cm,10cm;5cm,9cm,10cm
*6、有两种不同的摆法,各边的火柴棒根数分别为2,4,4;3,3,4
1.2定义与命题
1、C
2、C
3、(1)如果两直线平行,那么内错角相等
(2)如果一个数是无限小数,那么它是个无理数
4、(1)(2)(3)(4)(5)(8)是命题;(6)(7)不是命题
5、答案不,如:如果两条直线平行,那么同位角相等;如果a>b,b>c,那么a>c
6、三角形中有两条边相等(或有两个角相等),有两条边相等(或有两个角相等)的三角形叫做等腰三角形
1.3证明
1、已知;两直线平行,内错角相等;已知;AED,2;内错角相等,两直线平行
2、由∠ACB=90°,得∠A+∠B=90°.
由CD⊥AB,得∠B+∠DCB=90°,从而∠A=∠DCB
3、由已知得½(∠EFC+∠AEF)=90°,即∠EFC+∠AEF=180°,得AB∥CD
4、由DE∥BC,得∠CDE=∠DCB。
八年级上册数学课本参考答案(一)
第4页
1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.
2.解:(1)不能;(2)不能;(3)能.理由略.
八年级上册数学课本参考答案(二)
习题11.1
1.解:图中共6个三角形,分别是△ABD,
△ADE,△AEC,△ABE,AADC,△ABC.
2. 解:2种.
四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,
3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.
4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF
5.C
6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),
因为6+6>8,所以此时另两边的长为6 cm,8 cm.
(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.
7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:
当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.
所以这个等亮余腰三角形的周长为16或17;
(2)22.
8.1:2 提示:用41/2BC.AD—丢AB.CE可得.
9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.
又DE//AC,所以∠DAC=∠1.
又DF//AB,所以∠DAB=∠2.
所以∠1=∠2.
10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条.
八年级上册数学课本参考答案(三)
习题11.2
1.(1) x= 33; (2)z一60;(3)z一54;(4)x=60.
2.解:(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了;
(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了;
(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了.
3.∠A=50°,∠B=60°,∠C=70°. 4.70°.
5.解:∵AB//CD,∠A=40°,
∴∠1=∠A=40°
∵∠D=45°,
∴∠2=∠1+∠D=40°+45°=85°.
6.解:∵AB//CD,∠A=45°,
∴∠1=∠A=45°.
∵∠1=∠C+∠E,
∴∠C+∠E=45°.
又∵∠C=∠E,∴∠C+∠C=45°,
∴∠C=22.5°.
7,解:依题意知∠ABC=80°-45°-35°,
∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,敬春滚即∠ACB=85°.
8.解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°.
9.解:因为∠A+∠ABC+∠ACB=180°,∠A=100°,所以∠ABC+∠ACB=180°-∠A=180°-100°=80°.
又因为∠1=∠2,∠3=∠4,所以∠2=1/2∠ABC,∠4=1/2∠ACB,
所以么2 +∠森贺4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x°=180°-(∠2+∠4) =180°-40°=140°.
所以x=140.
10.180° 90° 90°
11.证明:因为∠BAC是△ACE的一个外角,
所以∠BAC=∠ACE+∠E.
又因为CE平分∠ACD,
所以∠ACE= ∠DCE.
所以∠BAC=∠DCE+∠E
又因为∠DCE是△BCE的一个外角,
所以∠DCE=∠B+∠E.
八年级数学课本习题如赛场,路途似跑道,运动健儿们,到了你们一显身手的时候了,我整理了关于八年级上册数学课本人教版答案,希望对大家有帮助!
八年级上册数学课本人教版答案(一)
习题11.3
1.解:如图11-3 -17所示,共9条.
2.(1)x=120;(2)x=30;(3)x=75.
3.解:如下表所示.
4. 108°,144° 5.答:这个多边形是九边形.
6.(1)三角形;
(2)解:设这个多边形是n边形.由题意得
(n-2)×180=2×360.解这个方程得n=6.
所以这个多边形为六边形.
7.AB//CD,BC//AD,理由略. 提示:由四边形的内角和可求得同旁内角裂早互补.
8.解:(1)是.理由:由已知BC⊥CD,可得∠BCD=90。,又因为∠1=∠2=∠3,所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线,所以CO是△BCD的高.
(2)由(1)知CO⊥BD,所以有AO⊥BD,即有∠4+∠5=90°.又因为∠4=60°,所以∠5=30°.
(3)由已知易得∠BCD= 90°,∠CDA=∠1+∠4=45°+60°=105°.∠DAB=∠5+∠6=2×30°=60°.又因为∠乎喊BCD+∠CDA+∠CBA+∠DAB=360°,所以∠CBA=105°.
9.解:因为五边形ABCDE的内角都相等,所以∠E=((5-2)×180°)/5=108°.
所以∠1=∠2=1/2(180°-108°)=36°.
同理∠3=∠4=36°,所以x=108 - (36+36) =36.
10.解:平行(证明略),BC与EF有这种关系.理由如下:
因为六边形ABCDEF的内角都相等,所以∠B=((6-2)×180°)/6=120。
志士惜年,贤人惜日,圣人惜时。惜取时间勤奋做苏教版 八年级 数学课本的练习题对我们有好处。下面是我为大家精心整理的苏教版八年级上册数学课本练习的答案,仅供参考。
八年级上册数学课本答案苏教版(一)
练习教材第19页第1题答案
解:图①与图⑥是全等三危形.因为在这两个三角形中,有两组对应角相等,且对应角夹的边也相等,所以根据ASA,可以判定这两个三角形全等;图②与图④、图③与图⑤也分别是全等三角形,理由同上.
练习教材第19页第2题答案
证明:∵O是AB的中点(已知),姿握
∴AO= BO(中点的定义),∵AC//BD(已知),
∴∠A=∠B(两直键扰线平行,内错角相等).
在△AOC和△BOD中,
∴△AOC≌△BOD(ASA),
∴CO= DO(全等三角形的对应边相等),
即O是CD的中点.
八年级上册数学课本答案苏教版(二)
练习教材第22页第1题答案
1、证明:在△ABE和△ACD中,
∴△ABE≌ACD(ASA).
∴AD=AE(全等三角稿册旦形的对应边相等).
∵ DB=AB=AD,EC=AC=AE,
∴DB=EC(等量代换)
练习教材第22页第2题答案
证明:∵∠ABC=∠DCB,∠1=∠2,
∴∠DBC= ∠ACB,
在△ABC和△DCB中,
∴△ABC≌△DCB( ASA).
∴AB= DC
(全等三角形的对应边相等). 八年级上册数学课本答案苏教版(三)
认真做 八年级 数学课本习题,就一定能成功!我整理了关于人教版八年级数学上册课本的答案,希望对大家有帮助!
八年级上册数学课本答案人教版(一)
第41页练习
1.证明:∵ AB⊥BC,AD⊥DC,垂足分为B,D,
∴∠B=∠D=90°.
在△ABC和△ADC中,
∴△ABC≌△ADC(AAS).
∴AB=AD.
2.解:∵AB⊥BF ,DE⊥BF,
∴∠B=∠EDC=90°.
在△ABC和△EDC,中,
∴△ABC≌△EDC(ASA).
∴AB= DE.
八年级上册数学课本答案人教版芦嫌(二)
习题12.2
1.解:△ABC与△ADC全等.理由如下:
在△ABC与△ADC中,
∴△ABC≌△ADC(SSS).
2.证明:在△ABE和△ACD中,
∴△ABE≌△ACD(SAS).
∴∠B=∠C(全等三角形的对应角相等).
3.只要测量A'B'的长即可,因为△AOB≌△A′OB′.
4.证明:∵∠ABD+∠3=180°,
∠ABC+∠4=180°,
又∠3=∠4,
∴∠ABD=∠ABC(等角的补角相等).
在谨哗胡△ABD和△ABC中,
∴△ABD≌△ABC(ASA).
∴AC=AD.
5.证明:在△ABC和△CDA中,
∴△ABC≌△CDA(AAS).
∴AB=CD.
6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°,
所以△ADC≌△BEC(AAS).
所以AD=BE.
7.证明:(1)在Rt△ABD和Rt△ACD中,
∴Rt△ABD≌Rt△ACD( HL).
∴BD=CD.
(2)∵Rt△ABD≌ Rt△ACD,
∴∠BAD=∠CAD.
8.证明:∵AC⊥CB,DB⊥CB,
∴∠ACB=∠DBC=90°.
∴△ACB和△DBC是直角三角形.
在Rt△ACB和Rt△DBC中,
∴Rt△ACB≌Rt△DBC(HL).
∴∠ABC=∠DCB(全等三角形的对应角相等).
∴∠ABD=∠ACD(等角的余角相等).
9.证明:∵BE=CF,
∴BE+EC=CF+EC.∴BC=EF.
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS).
∴∠A=∠D.
10.证明:在△AOD和△COB中.
∴△AOD≌△COB(SAS).(6分)
∴∠A=∠C.(7分)
11.证明:∵AB//ED,AC//FD,
∴∠B=∠E,∠ACB=∠DFE.
又∵FB=CE,∴FB+FC=CE+FC,
∴BC= EF.
在△ABC和△DEF中,
∴△ABC≌△DEF(ASA).
∴AB=DE,AC=DF(全等三角形的对应边相等).
12.解:AE=CE.
证明如下:∵FC//AB,
∴∠F=∠ADE,∠FCE=∠A.
在△CEF和△AED中,
∴△CEF≌△AED(AAS).
∴ AE=CE(全等三角形的对应边相等).
13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD.
在△ABD和△ACD中,
∴△ABD≌△祥拦ACD(SSS).
∴∠BAE= ∠CAE.
在△ABE和△ACE中,
∴△ABE≌△ACE(SAS).
∴BD=CD,
在△EBD和△ECD中,
:.△EBD≌△ECD(SSS).
八年级上册数学课本答案人教版(三)
习题12.3
1.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.
在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL).
∴PM=PN(全等三角形的对应边相等).∴OP是∠AOB的平分线.
2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF.
在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL).
∴EB=FC(全等三角形的对应边相等)
3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°.
∵∠DOB=∠EOC,OB=OC,
∴△DOB≌△EOC
∴OD= OE.
∴AO是∠BAC的平分线.
∴∠1=∠2.
4.证明:如图12 -3-26所示,作DM⊥PE于M,DN⊥PF于N,
∵AD是∠BAC的平分线,
∴∠1=∠2.
又:PE//AB,PF∥AC,
∴∠1=∠3,∠2=∠4.
∴∠3 =∠4.
∴PD是∠EPF的平分线,
又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等.
5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB,
∴PD=PE,∠OPD=∠OPE.
∴∠DPF=∠EPF.
在△DPF和△EPF中,
∴△DPF≌△EPF(SAS).
∴DF=EF(全等三角形的对应边相等).
6.解:AD与EF垂直.
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.
在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).
∴∠ADE=∠ADF.
在△GDE和△GDF中,
∴△GDF≌△GDF(SAS).
∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.
7,证明:过点E作EF上AD于点F.如图12-3-27所示,
∵∠B=∠C= 90°,
∴EC⊥CD,EB⊥AB.
∵DE平分∠ADC,
∴EF=EC.
又∵E是BC的中点,
∴EC=EB.
∴EF=EB.
∵EF⊥AD,EB⊥AB,
以上就是数学八年级上册答案的全部内容,1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略.八年级上册数学课本参考答案(二) 习题11.1 1.解:图中共6个三角形,分别是△ABD。