当前位置: 首页 > 所有学科 > 数学

数学与思维,数学需要什么思维

  • 数学
  • 2024-08-30

数学与思维?.那么,数学与思维?一起来了解一下吧。

数学与思维的关系

培养学生良好的思维品质始终是小学数学教学的目标之一,也是实现素质教育的重要途径。而一年级是启蒙教育的重要阶段,是今后发展思维能力的奠基石,为此,我在把握教材的前提下,对一年级学生初步思维能力的培养作出以下几点探索。
一、理解概念 打好基础
刚入学的学生,数数都很熟练,但对数的概念不甚清楚,所以,在教学准备课10以内数的认识时要下一番功夫。教学时,让学生根据主题图数数,由实物(如铅笔、小刀、小棒、图画),抽象到用算珠代替数,最后抽象到具体的数。数的概念的形成是一个逐步抽象的过程,教师应从学生熟悉的生活知识开始,逐渐引导,让学生理解,数表示某一事物的多少。教材中有很多的概念含义,对含义的教学,教师要深入浅出地引导学生理解掌握,只有掌握了这些含义,才能让思维迈开步子。
二、注重操作 活跃思维
由于年龄特点,一年级学生思维是和动作分不开的,是形象思维。利用动手操作,形成表象,最终才能发展到抽象思维,从学生的年龄特点和思维特点出发,加强直观教学,通过各种感官来学习,教师要尽可能多给学生操作的机会。特别重要的是:学生的操作要发挥作用,忽略思考的操作就失去了操作的意义,这就要求学生根据操作,运用形象进行思维活动。这时需要教师精心设计操作程序和指导语。
实践证明,通过摆一摆,画一画的直观教学,将抽象的数学知识形象的展示出来,使学生形成感性到理性的认识过程,这样获得的知识牢固,从而有力地促进了思维的活跃。
三、训练语言 促进思维
培养学生有条理,有根据的思考,比较完整的叙述思考过程。学生想的是否有条理,有根据,要靠语言来检验,所以,从一年级开始要重视训练学生说来促进想,这样有利于学生发展思维。教材中直观图较多,教师首先引导学生准确地说出图意。教学加减含义时,我就以一问一答一摆的形式,有意识地训练学生说。
通过摆一摆,看一看,说一说,把学生的操作观察,思维和语言有机地结合起来,为今后学习打下牢固的基础。
四、注重联系 丰富思维
培养学生的思维能力,就是培养学生进行初步的分析,综合,抽象,判断,推理等,学会思考问题能力,这就要求教师在教学时要注意知识间的联系。比如由加算减的计算问题,就是利用加减法之间的联系,既解决了减法的计算问题,又有效地培养了学生的类推能力。由加算减的铺垫,有一幅图列两道算式,到一幅图列四道算式,揭示相应的加减法之间的联系,让学生体会其中的规律,然后再学习由加算减的计算方法就比较容易了,培养学生的思维灵活性和创造性。
培养学生思维能力是一个长期的任务,尤其是当今后素质教学为知道思想的教育改革时期,更突出强调了对学生思维的培养,我们要积极调动学生的兴趣和积极性,有计划、有目的地培养和训练学生的思维能力,提高学生的数学素质。

一二年级数学思维

数学学习对于学生的逻辑思维能力要求较高,小学数学是学生开始进行数学学习的初期阶段,也是小学生各种学习习惯、学习能力的养成的初期阶段。小学数学的学习对于学生今后数学学习的影响至关重要,为了学生今后法发展,在我们的小学数学课堂要通过一系列数学思考帮助学生提高数学思维能力。
数学学习对于学生的逻辑思维能力要求较高,小学数学是学生开始进行数学学习的初期阶段,也是小学生各种学习习惯、学习能力的养成的初期阶段。小学数学的学习对于学生今后数学学习的影响至关重要,为了学生今后法发展,在我们的小学数学课堂要通过一系列数学思考帮助学生提高数学思维能力。

数学思维训练100题免费

培养学生的推理思维习惯是形成数学直觉,发展数学思维,获得数学发现的基本素质,教师在课堂教学中既要强调思维的严密性,结果的正确性,也要重视思维的直觉探索性和发现性,充分发挥课堂教学的作用,通过几何、数与代数、概率与统计、实践与综合应用等教学活动来训练:第一,创设情境,引导学生观察。推理并非盲目的、漫无边际的胡乱猜想,它是以数学中某些已知事实为基础,通过选择恰当的复习结构材料创设情境,引导学生观察。欧拉曾说过:“数学这门学科,需要观察,还需要实验。”观察是人们认识客观世界的门户,观察可以调动学生的各种感官,在已有知识的基础上产生联想,通过观察还可以减少猜想的盲目性。同时,观察力也是人的一种重要能力,所以在教学中要给学生必要的时间和空间进行观察,培养良好的观察习惯,提高观察力。第二,精心设计实验,激发学生的思维。高斯曾提到过,他的许多定理都是靠实验、归纳发现的,证明只是补充的手段。在数学教学中,正确地恰到好处地应用数学实验,也是当前实施素质教育的需要。著名的数学教育家波利亚曾指出:“数学有两个侧面,一方面是欧几里德式的严谨科学,从这方面看,数学像是一门系统的演绎科学;但是另一方面,在创造过程中的数学更像是一门实验性的归纳科学,”从这一点上讲,数学实验对激发学生的创新思维有着不可低估的作用。数学理论的抽象性,通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,把这种直观的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及其它问题的联系。数学实验是帮助学生理解和巩固数学知识的一种有效方法。学生在实验时要将课本知识与眼前现实结合起来,将实验中获得的感性认识,通过抽象思维得到对概念、定理的深入理解。第三,仔细设计问题,激发学生猜想。数学猜想是数学研究中合情的推理,是数学证明的前提。只有对数学问题的猜想,才会激发学生解决问题的兴趣,启迪学生的创造思维,从而发现问题、解决问题。数学猜想是在已有数学知识和数学事实的基础上,对求知量及其规律做出的似真判断,是科学假说在数学的体现,它一旦得到论证便上升为数学理论。牛顿有一句名言:“没有大胆的猜想,就做不出伟大的发现。”数学家通过“提出问题——分析问题——检验证明”,开拓新领域,创立新理论。在中学数学教学中,许多命题的发现、性质的得出、思路的形成和方法的创造,都可以通过数学猜想而得到。通过猜想不仅有利于学生牢固地掌握知识,也有利于培养他们的推理能力。第四,利用类比探讨,加深知识理解。类比推理是思维过程中由特殊到特殊的推理,是合情推理的主要形式之一,类比是对知识进行理线串点的一种手法。对于相互有联系的命题进行类比分析,有利于学生对问题的更深层次的认识,更有利于学生对问题规律的探寻。以问题和条件,题型结构或题设结论为思维起点,应用类比的方法,分析其与已有的认知结构中具有的相似特征,然后猜想其解题思维上的类似之处,从而解决问题。第五,利用数学归纳,巩固从特殊到一般的思维。归纳推理是思维过程中从特殊到一般的推理,也是合情推理的主要形式之一。勾股定理的发现都是应用归纳推理的典型例证。在学习运用归纳的过程中,学生才不断地体会到“分析”、“假设”、“结论”等多种数学环节。此外,用数学归纳法来证题,也有助于训练学生用数学符号表达自己的数学思想。第六,利用演绎证明,揭露蕴涵性质。演绎推理又称论证推理,是思维过程中从一般到特殊的推理,其前提和结论间具有蕴涵关系,是必然性推理。它的每一步推理都是可靠的、无可置疑和终决的,因而可以用来肯定数学知识,建立严格的数学体系。把一般结果应用到特殊中,能为归纳、类比等得到的猜想加以证实,从而培养学生的推理能力。逻辑推理和合情推理是数学思维的两翼,两者相辅相成,互相补充,缺一不可。从功能上来看,逻辑推理是论证的手段,合情推理是“发现”的工具;从阶段上来看,合情推理是逻辑推理的前奏,逻辑推理是合情推理的升华;逻辑推理能力越强,合情推理就越活跃,推理结果也越可靠,因此也可以说逻辑推理是合情推理的基础。正如数学教育大师玻利亚所说:“我们靠论证推理来肯定我们的数学知识,而靠合情推理来为我们的猜想提供依据。”演绎法被广泛用来建立定理命题和证明推论的正确性,先前已证明的结论、事先做出的假设或设定的概念等都可以直接用来推证新的结论。应当指出培养学生的演绎推理能力不仅要注意层次性,而且要关注学生的差异性。并不是每个学生在教师的引导下都能够总结出规律的。

数学思想和数学思维

逻辑思维能力是指正确、合理思考的能力。即对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的能力,采用科学的逻辑方法,准确而有条理地表达自己思维过程的能力。它与形象思维能力截然不同.
逻辑思维能力不仅是学好数学必须具备的能力,也是学好其他学科,处理日常生活问题所必须的能力。数学是用数量关系(包括空间形式)反映客观世界的一门学科,逻辑性很强、很严密。

数学思维训练题

哪个阶段的学生? 以下仅供参考: 培养学生思维能力的有效方法 思维是人脑对客观事物的一般特性和规律的一种间接的、概括的反映过程。进行思维训练,培养学生的思维能力,是小学数学教学的主要任务之一,是实施素质教育开发学生智能,提高学生素质的重要措施。下面就如何培养学生的思维能力谈几点粗浅的看法。 一、进行类比迁移,培养思维的深刻性 思维的深刻性是指思维活动达到较高的抽象程度和逻辑水平,表现在能善于深入地思索问题,从纷繁到复杂的现象中,抓住发现事物的本质规律。小学生的认知结构往往缺损,他们不善于将知识纳入原有的认知结构之中,因而考虑问题缺乏深度,因此,在教学中应抓以下三点: 1、培养学生对数的概括能力。 数的分解能力,是数的概括的核心。如教20以内的加法,利用直观教具,让学生了解某数是由几个部分组成和如何组成的,引导他们将20以内的数比较实际意义,认识大小,顺序、进行组合与分解练习。 2、让儿童逐步掌握简单的推理方法。 根据教材的内在联系,引导儿童进行类比推理。例如:在乘法口诀教学中,先通过一环紧扣一环的步骤,让学生展示“生动”的思维过程,使学生认识2—4的乘法口诀的可信性,还了解每句乘法口诀形成的过程。然后利用低年级学生模仿性强的特点,让他们模仿老师的做法去试一试,推导出5—6的乘法口诀。生模仿获得成功后,就与他们一起总结几个步骤: ①摆出实物;提供思维材料; ②列出加法式子的结果; ③列出乘法式子,说明它的结果就是加法式子结果; ④用乘法式子的已知数和结果构造口诀。让他们按步骤来独立地推导7—8的乘法口诀。 在这过程中,针对不同学生不同阶段的不同情况,进行多寡不同的提示和点拨,使独立思维逐步发展。到推导9的乘法口诀时,有的学生已经几乎完全能进行推导了,而大多数学生的思维的能力都表现出不同程度的提高。 3、培养掌握应用题结构的能力。 各科教学问题,都有一个结构问题。狠抓结构训练,使学生掌握数学问题的数量关系,而不受题中具体的情节干扰,是培养思维深刻性的重要一环。由于低年级学生受年龄和知识水平的限制,他们的思维往往带有很大的局限性。为此,我在数学教学中采取多种方法。如:补充条件和问题,不变题意而改变叙述方法,根据问题说所需条件,扩题训练,拆应用题缩题训练,审题训练,自编应用题训练等等,拓展学生思维活动,训练学生思维的深刻性。 二、进行合理联想,培养思维的敏捷性 思维敏捷性是指一个人在进行思维活动时,具有当机立断的发现和解决问题的能力,表现在运算过程的正确迅速,观察问题的避繁就简,思维过程的简洁敏捷。因此,我在计算教学过程中,以培养学生思维的敏捷为目的,要求学生有正确迅速的计算能力。办法有以下两点: 1、计算教学中,要求学生在正确的基础上,始终有速度。 对于低年级的儿童,应注意抓好学生计算的正确率的同时,狠抓速率训练,每天用一定时间进行一次速算练习。形式有口算。如“每人一题,”“一人计算,全班注视”,发现错误,立即更正或“对口令”,老师说前半句乘法口诀,全班同学回答下半句乘法口诀,让全体学生的思维都处于积极状态。速算比赛,如:比在规定时间内完成计算题的数量,比完成规定习题所需时间,使全班学生人人都能正确迅速地思考问题。 三、进行说意练习,培养思维的逻辑性 思维的逻辑性表现为:遵循逻辑的规律,顺序和根据,使思考问题有条理,层次分明,前后连贯。语言是思维的裁体,思维依靠语言,语言促进思维。教师对学生加强语言的调控,训练其口语表达能力,是学生能够有根有据进行思考的基础。因此教学中要使学生比较完整地叙述思考过程,准确无误地说出解答思路,并训练学生的语言表达简洁规范,逐步提高思维的条理性和逻辑性。 低年级学生学习数学知识,必须依赖于直观材料,使他们所学知识产生鲜明的表象。同时,要使学生获得准确丰富的感性知识,又必须通过合乎逻辑语言引导。最后大脑借助于语言,对感知的事物去伪存真,分析综合,抽象出本质特征。 如:教学“整万数的读法”时,教师在计数器上拨数,为学生认识数提供了感性材料之后,首先让学生说了计算器上珠所表示的意义,在学生大脑中建立了整万数的表象,为学生由形象思维向抽象思维发展提供了支柱,然后,又摆脱计算器,让学生在数位顺序表上读出“0”在不同位上的五个数,再让学生说出每个数中的“0”在什么位上和它的读法。这样,使学生用讨论的方法对比整万数与万以内数读法的异同,从而概括出整万数的读数法则,促进了学生抽象逻辑思维能力的发展。 例如应用题教学:果园里有梨树45棵,比桔树少9棵,桔树有多少棵?启发引导学生按下列要点讲清算理:根据哪个条件知道“谁与谁比”“谁多谁少”“知谁求谁”梨树比桔树少9棵换成另外的说法,应该怎样叙述?要求桔树多少棵,实际是求比几多几的数,应该用什么方法计算?对这些问题综合连贯的回答,小学生就能较准确地用口头表达算理,经过反复的讲练,不但提高了低年级学生的语言表达能力,而且能深化思维。 总之,低年级学生思维能力培养,是我们当今数学教学中必然趋向。让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学,让他们的数学思维能力在课堂学习中得到充分的发展。

以上就是数学与思维的全部内容, .。

猜你喜欢