高中数学导数笔记?其次,列出了一系列三角函数的导数公式,并强调了正弦、正切、正割导数均为正,而余弦、余切、余割导数均为负。接着,具体解析了正切、正割、余切、余割的求导过程。反三角函数部分,通过公式展示其导数性质,并详细说明了反三角函数求导的步骤,包括利用反函数性质和复合函数求导法则等。最后,那么,高中数学导数笔记?一起来了解一下吧。
高中的数学已经不同于初中的数学,他有一个大的跨越。首先,你要适应这种学习环境。接着,你要找到适合自己的学习方法。数学学习中的概念,你必须掌握的透彻,这样才能谈到应用。预习这个环节必不可少,其次,你要有一个错题本。多练
cosx^2的导数是-2xsin(x^2)。
cosx^2的导数是-2xsin(x^2)求导过程:y=cos(x^2),则y'=-sin(x^2)*(x^2)'=-2xsin(x^2)原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'。
数学复习的注意点有:
1、想:即回想,回忆,是闭着眼睛想,在大脑中放电影。学生课后最需要做的就是是回想。此过程非常重要,几乎所有清华生、北大生、高考状元都是这样做的。学生应在每天晚上临睡前安排一定时间回想。
2、查:回想是目前联合国教科文组织承认的最有效的复习方法,也是查漏补缺的最好方法。回想时,有些会非常清楚地想出来,有些则模糊,通过这样间隔性的2-3遍,几乎终生不忘。而模糊和完全想不起来的就是漏缺部分,需要从头再学。
3、看:即看课本,看听课笔记。既要有面,更要有点。这个点,既包括课程内容上的重点,也包括回忆的时候没有想起来、较模糊的“漏缺”点。
4、写:随时记下重难点、漏缺点。一定要在笔记中把它详细整理,并做上记号,以便总复习的时候,注意复习这部分内容。
⒈y=c(c为常数) y'=0
⒉y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x
⒋y=logax(a为底数,x为真数) y'=1/x*lna
y=lnx y'=1/x
⒌y=sinx y'=cosx
⒍y=cosx y'=-sinx
⒎y=tanx y'=1/cos^2x
⒏y=cotx y'=-1/sin^2x
⒐y=arcsinx y'=1/√(1-x^2)
⒑y=arccosx y'=-1/√(1-x^2)
⒒y=arctanx y'=1/(1+x^2)
⒓y=arccotx y'=-1/(1+x^2)
⒔y=u^v ==> y'=v' * u^v * lnu + u' * u^(v-1) * v
在推导的过程中有这几个常见的公式需要用到:
⒈y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
⒉y=u/v,y'=(u'v-uv')/v^2
⒊y=f(x)的反函数是x=g(y),则有y'=1/x'
方法/步骤1、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。2、做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。3、主动复习总结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。4、积累资料随时整理。要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。
高考数学基础知识汇总
第一部分 集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;
(2) 注意:讨论的时候不要遗忘了 的情况。
(3)
第二部分 函数与导数
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数 分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
以上就是高中数学导数笔记的全部内容,6、对数函数的求导公式指对数函数的求导公式也分为两种情况:一种是以e为底的对数求导公式,另一种是以非e为底的对数求导公式。7、对数函数拓展的求导公式指对数函数拓展的求导公式是以e为底的对数求导公式的拓展。高中生数学学习方法:1.上课多做笔记,数学也是有很多公式、定式要求要背的。