目录数学小知识简短 十篇有趣的数学小故事 数学课外小知识内容 课外数学小知识简短 趣味数学小知识
如下:
1、数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
2、数学在人类历史发展和社会生活中发挥着不可替代的作纳碧用,也是学习和研究现代科学技术必不可少的基本。
3、数学起源于人类早期的生产活动,古巴比伦人从和春远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
4、数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数洞棚举学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
数学小知识
--------------------------------------------------------------------------------
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文念氏"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学逗培家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",仔指散是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造
1.课外数学小知识
一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等首码。
第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。
它是数论中的一个著名问题,常被称为数学皇冠上的明珠。 二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。
国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。
陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。
但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也备燃远远不够。赛萨的话没有错,他的要求的确是满足不了的。
根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。
三、古希腊的智者者滚哪是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。
2.谁给我20篇数学课外知识呀,字少点呀
数学知识 《几何原本》 几 何 原 本 《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。
自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。
除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的。
公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料。希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识。
首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充。到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础。
欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。
《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的。《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的化知识。
第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。该卷的最后两个命题是毕达哥拉斯定理及其逆定理。
这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的。”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了。
第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学。 第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理。
这些定理大多都能在现在的中学数学课本中找到。第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题。
第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一。据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容。
他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来。此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐。
第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理。 第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷。
最后三卷,即第十一、十二和十三卷,论述立体几何。目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到。
《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系。所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题。
《几何原本》成为了两千多年来运用公理化方法的一个绝好典范。 诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值。
它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语。它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝。
哥德巴赫猜想 哥 德 巴 赫 猜 想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。
这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。
实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和。1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题。
但是第一个问题至今仍未解决。由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”。
1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其。
3.课外数学小知识
一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。
第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。
它是数论中的一个著名问题,常被称为数学皇冠上的明珠。二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。
国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。
陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。
但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。
根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。
三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。
4.关于数学的小知识
数学小知识
--------------------------------------------------------------------------------
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到 *** 论中去了。
到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号。他认为"*"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造
5.数学趣味小知识 简短的 20到50字左右
趣味数学小知识 数论部分: 1、没有最大的质数。
欧几里得给出了优美而简单的证明。 2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。
陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。 3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。
欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。 拓扑学部分: 1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。 3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操, 摘自:/bbs2/ThreadDetailx?id=31900。
6.小学数学5个小知识
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 )表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 )周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除。
7.数学趣味小知识 简短的 20到50字左右
趣味数学小知识数论部分:1、没有最大的质数。
欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。
陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。
欧拉证明了3和4,1995年被英国数学家安德鲁*怀尔斯证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:/bbs2/ThreadDetailx?id=31900。
1. 0的由来:0虽然是第一个自然数,但是它的出现比“1、2、3、4、5”这些数晚得多,更不可思议的是,它从印度传入欧洲时,一点儿也不受欢迎,罗马教皇认为上帝创造的数字里没有0这个怪物,于是,0便被罗马教皇“封杀”了。但由于0在数学运算上的便利性,最终还是得到了广泛传播。
2.“猴年马月”是何时?
“猴年马月”这个成语大家都知道,它的意思是一件事情遥遥无期,不知道什么时候才能实现,泛指不可知的年月。其实在干支纪年中,“猴年马月”是一个确定的时间段,它每隔十二年出现一次,比如 2016 年和 2028 年的农历五月都是“猴年马月”。
3.身份证号码的含意:身份证号码的前 6 位数字代表我们户口的所在地,其中第 1 位数字表示地区,比如 1 代表华北,2 代表东北等 ;第 2 位数字表示户籍地所在的直辖市、省、自治区在该地区中的排位,比如在华北地区,1 代表北京市,2 代表天津市 ;第 3 ,4 位数字则为地市级政府的代码 ;第 5 ,6 位数字为县、区级政府的代码。身份证号码第 7 位到第 14 位数字表示出生的年(第 7 位到第10 位)、月(第 11,12 位)、日(第 13,14 位)。同一个区(县),遇到同年同月同日生这种情况时,就用身份证号码的第 15 位、第 16 位、第 17 位数字加以区分,我们称之为顺序码。顺序码是对同一地区、相同生日的人编定的顺序号。
4.为什么许多比赛计算成绩的时候会去掉一个最高分去掉一个最低分?
这就联系到关于平均数的问题。平均数是用来描述一组数据集中趋势的特征数,但在个别背景下,它并不能真实地描述一组数据的集中趋势,生活中常常听到有人说自己“被平均”了,就属于这种情形。比如,张村有10 户人家,人蚂锋均资产100 万。其实村里有个漏物链张千万,剩下9 户都是穷光蛋。这就是典型的“被平均”的例子。所以在很多比赛中,为了使参赛者的得分更加客观、公正,一般是计算去掉一个最高分和一个最低分之后的平均分,这样做可以过滤掉较为极端的分数,更真实地反返孙映数据的集中趋势。
以上内容摘自《数学真逗》
数学小知识集锦:
1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。
2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。
4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国蠢迟外叫做唐图。
5、传说早在四千五百年前,我们的祖先就用刻漏来计时。
6、中国是最早使用四舍五入法进行计算的国家。
7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,带敏李提出拿掘五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。