当前位置: 首页 > 所有学科 > 数学

数学必修三,高中数学必修3新教材

  • 数学
  • 2023-06-05
目录
  • 高二必修三数学电子课本
  • 数学必修三目录
  • 数学必修三题
  • 数学必修三A版
  • 高中数学必修二电子版

  • 高二必修三数学电子课本

    高中数学必修3知识点总结篇一

    一、一次函数定义与定义式:

    自变量x和因变量y有如下关系:

    y=kx+b

    则此时称y是x的一次函数。

    特别地,当b=0时,y是x的正比例函数。

    即:y=kx(k为常数,k≠0)

    二、一次函数的性质:

    1.y的变化值与对应的x的变化值成正比例,比值为k

    即:y=kx+b(k为任意不为零的实数b取任何实数)

    2.当x=0时,b为函数在y轴上的截距。

    三、一次函数的图像及性质:

    1.作法与图形:通过如下3个步骤

    (1)列表;

    (2)描点;

    (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

    2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数宴雀局与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

    3.k,b与函数图像所在象限:

    当k>0时,直线必通过一、三象限,y随x的增大而增大;

    当k<0时,直线必通过二、四象限,y随x的增大而减小。

    当b>0时岁亮,直线必通过一、二象限;

    当b=0时,直线通过原点

    当b<0时,直线必通过三、四象限。

    特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

    这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

    四、确定一次函数的表达式:

    已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

    (1)设一次函数的表达式(也叫解析式)为y=kx+b。

    (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

    (3)解这个二元一次方程,得到k,b的值。

    (4)最后得到一次函数的表达式。

    高中数学必修3知识点总结篇二

    高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学**两本书。

    必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)

    必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

    这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

    2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

    3、圆方程:

    必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

    必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

    2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

    必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌晌让握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

    高中数学必修3知识点总结篇三

    一、集合概念

    (1)集合中元素的特征:确定性,互异性,无序性。

    (2)集合与元素的关系用符号=表示。

    (3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。

    (4)集合的表示法:列举法,描述法,韦恩图。

    (5)空集是指不含任何元素的集合。

    空集是任何集合的子集,是任何非空集合的真子集。

    函数

    一、映射与函数:

    (1)映射的概念:(2)一一映射:(3)函数的概念:

    二、函数的三要素:

    相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)

    (1)函数解析式的求法:

    ①定义法(拼凑):②换元法:③待定系数法:④赋值法:

    (2)函数定义域的求法:

    ①含参问题的定义域要分类讨论;

    ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

    (3)函数值域的求法:

    ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;

    ②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;

    ④换元法:通过变量代换转化为能求值域的函数,化归思想;

    ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

    ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;

    ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

    ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

    三、函数的性质:

    函数的单调性、奇偶性、周期性

    单调性:定义:注意定义是相对与某个具体的区间而言。

    判定方法有:定义法(作差比较和作商比较)

    导数法(适用于多项式函数)

    复合函数法和图像法。

    应用:比较大小,证明不等式,解不等式。

    奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;

    f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

    判别方法:定义法,图像法,复合函数法

    应用:把函数值进行转化求解。

    周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

    其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

    应用:求函数值和某个区间上的函数解析式。

    四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

    常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

    平移变换y=f(x)→y=f(x+a),y=f(x)+b

    注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

    (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

    对称变换y=f(x)→y=f(-x),关于y轴对称

    y=f(x)→y=-f(x),关于x轴对称

    y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

    y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

    伸缩变换:y=f(x)→y=f(ωx),

    y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

    一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;

    数学必修三目录

    目前高三同学已经进入第一轮备考阶段,为了帮助学生们更好地复习高考数学。下面就让我给大家分享一些高中数学必修三公式汇总吧,希望能对你有帮助!

    高中数学必修三公式汇总篇一

    乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

    三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab

    |a-b||a|-|b|-|a|a|a|

    一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a

    根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理

    判别式

    b2-4ac=0注:方程有两个相等的实根

    b2-4ac0注:方程有两个不等的实根

    b2-4ac0注:方程没有实根,有共轭复数根

    三角函数公式

    两角和公式

    sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

    cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

    tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

    ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

    倍角公式

    tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

    半角公式

    sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)

    cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)

    tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))

    ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))

    和差化积

    2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

    2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

    sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

    tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

    ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/岩谈sinasinb

    某些数列前n项和

    1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2

    粗扒碰2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

    13+23+33+43+53+63+n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

    正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径

    余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角此带

    圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

    圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0

    抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

    直棱柱侧面积s=c*h斜棱柱侧面积s=c*h

    正棱锥侧面积s=1/2c*h正棱台侧面积s=1/2(c+c)h

    圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi*r2

    圆柱侧面积s=c*h=2pi*h圆锥侧面积s=1/2*c*l=pi*r*l

    弧长公式l=a*ra是圆心角的弧度数r0扇形面积公式s=1/2*l*r

    锥体体积公式v=1/3*s*h圆锥体体积公式v=1/3*pi*r2h

    斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长

    柱体体积公式v=s*h圆柱体v=pi*r2h

    高中数学必修三公式汇总篇二

    内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

    复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

    指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

    函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数

    正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

    两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴

    求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

    幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

    奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

    高中数学必修三公式汇总篇三

    1 过两点有且只有一条直线

    2 两点之间线段最短

    3 同角或等角的补角相等

    4 同角或等角的余角相等

    5 过一点有且只有一条直线和已知直线垂直

    6 直线外一点与直线上各点连接的所有线段中,垂线段最短

    7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

    8 如果两条直线都和第三条直线平行,这两条直线也互相平行

    9 同位角相等,两直线平行

    10 内错角相等,两直线平行

    11 同旁内角互补,两直线平行

    12两直线平行,同位角相等

    13 两直线平行,内错角相等

    14 两直线平行,同旁内角互补

    15 定理 三角形两边的和大于第三边

    16 推论 三角形两边的差小于第三边

    17 三角形内角和定理 三角形三个内角的和等于180°

    18 推论1 直角三角形的两个锐角互余

    19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

    20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

    21 全等三角形的对应边、对应角相等

    22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

    23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

    24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

    25 边边边公理(SSS) 有三边对应相等的两个三角形全等

    26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

    27 定理1 在角的平分线上的点到这个角的两边的距离相等

    28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

    29 角的平分线是到角的两边距离相等的所有点的集合

    30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

    31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

    32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

    33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

    34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

    35 推论1 三个角都相等的三角形是等边三角形

    36 推论 2 有一个角等于60°的等腰三角形是等边三角形

    37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

    38 直角三角形斜边上的中线等于斜边上的一半

    39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

    看了高中数学必修三公式汇总的人还看:

    1. 高一数学必修三公式定理总结

    2. 人教版必修3数学算法初步知识点归纳

    3. 初3数学公式大全

    4. 高考必备的数学公式汇总

    5. 高中数学几何公式大全

    6. 高考必记数学公式汇总

    数学必修三题

    一个人的知识面是一个圆圈,知识储备越多,圆圈越大,接触到的面积便越广阔,便能掌握和窥视更多的机会。下面是由我为大家整理的高中数学必修三知识点,仅供参考,欢迎大家阅读。

    高中数学必修三知识点1

    算法初步

    1:算法的概念

    (1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

    (2)算法的特点:

    图片有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

    图片确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

    图片顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

    图片不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.

    图片普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

    2: 程序框图

    (1)程序框图基本概念:

    图片程序构图的概念:程序框图又称流程图,是一种用规定的图形歼桐扰、指向线及文字说明来准确、直观地表示算法的图形。

    一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

    图片构成程序框的图形符号及其作用

    程序框

    名称

    功能

    图片

    起止框

    表示一个算法的起始和结束,是任何流程图不可少的。

    图片

    输入、输出框

    表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。

    图片

    图片

    处理框

    赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

    判断框

    判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”。

    3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

    (1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

    (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的

    算法结构。

    (3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

    高中数学必修三知识点2

    统计

    2.1.1简单随机抽样

    1.总体和样本

    在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体 的有关性质,一般从总体中随机抽取一部分: 研究,我们称它为样本.其中个体的个轮羡数称为样本容量.

    2.简单随机抽样,也叫纯随机抽样。

    就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

    3.简单随机抽样常用的方法:

    (1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计直接抽取。

    在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

    4.抽签法:

    (1)给调查对象群体中的每一个对象编号;

    (2)准备抽签的,实施抽签

    (3)对样本中的每一个个体进行测量或调查

    例:请氏旦调查你所在的学校的学生做喜欢的体育活动情况。

    5.随机数表法:

    例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

    2.1.2抽样

    1.抽样(等距抽样或机械抽样):

    把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

    K(抽样距离)=N(总体规模)/n(样本规模)

    前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

    2.抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用抽样可以大大提高估计精度。

    2.1.3分层抽样

    1.分层抽样(类型抽样):

    先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

    两种方法:

    1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

    2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用抽样的方法抽取样本。

    2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

    分层标准:

    (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

    (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

    (3)以那些有明显分层区分的变量作为分层变量。

    3.分层的比例问题:

    (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

    (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

    2.2.2用样本的数字特征估计总体的数字特征

    1、本均值:

    2、样本标准差:

    3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

    虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

    4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变

    (2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍

    (3)一组数据中的最大值和最小值对标准差的影响,区间 的应用;

    “去掉一个最高分,去掉一个最低分”中的科学道理

    2.3.2两个变量的线性相关

    1、概念:

    (1)回归直线方程

    (2)回归系数

    2.最小二乘法

    3.直线回归方程的应用

    (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

    (2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

    (3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

    4.应用直线回归的注意事项

    (1)做回归分析要有实际意义;

    (2)回归分析前,最好先作出散点图;

    (3)回归直线不要外延。

    高中数学必修三知识点3

    概 率

    3.1.1 —3.1.2随机事件的概率及概率的意义

    1、基本概念:

    (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

    (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

    (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

    (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

    (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

    (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

    3.1.3概率的基本性质

    1、基本概念:

    (1)事件的包含、并事件、交事件、相等事件

    (2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

    (3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

    (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

    2、概率的基本性质:

    1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

    2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

    3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

    4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

    3.2.1 —3.2.2古典概型及随机数的产生

    1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

    (2)古典概型的解题步骤;

    ①求出总的基本事件数;

    ②求出事件A所包含的基本事件数,然后利用公式P(A)=

    3.3.1—3.3.2几何概型及均匀随机数的产生

    1、基本概念:

    (1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

    (2)几何概型的概率公式:

    P(A)=;

    (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等。

    高中数学必修三知识点相关文章:

    ★高中数学必修三重点知识点复习

    ★高一数学必修3各章知识点总结

    ★高中数学必修三目录人教版

    ★高中数学必修三公式汇总

    ★高中数学必修3随机抽样知识点

    ★高三数学必修三知识点总复习资料

    ★高中必修三数学知识点

    ★高二数学必修三第三章知识点总结

    ★北师大高中数学必修3知识点

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();

    数学必修三A版

    数学是研究数量、结构、变化历拿、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面我整理了《人教版高中数学必修三目录》,供大家参考!

    第一章 算法初步

    1.1算法与程序框图

    1.2基本算法语句

    1.3算法案例——阅读与思考 割圆术

    小结

    复习参考题

    第二章 统计

    2.1随机抽样——阅读与思考 一个著名的案例

    ——阅读与思考 广告中数据的可靠性

    ——阅读与思考 如何得到敏感性问题的诚郑闭实反应

    2.2用样本估计总体——阅读与思考 生产过程中的质量控制图

    2.3变量间的相关关系——阅读与思考 相关关系的强与弱

    实习作业

    小结

    复习参考题

    第三章 概率

    3.1随机事件的概率——阅读与思考 天气变化的认识过喊烂裂程

    3.2古典概型

    3.3几何概型——阅读与思考 概率与密码

    小结

    复习参考题

    高中数学必修二电子版

    【 #高一#导语】进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意哗伏到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。 无 高一频道为正在努力学习的你整理了《高一数学必修三知识点总结》,希望对你有帮助!

    【篇一】高一数学必修三知识点总结

    1.一些基本概念:

    (1)向量:既有大小,又有方向的量.

    (2)数量:只有大小,没有方向的量.

    (3)有向线段的三要素:起点、方向、长度.

    (4)零向量:长度为0的向量.

    (5)单位向量:长度等于1个单位的向量.

    (6)平行向量(共线向量):方向相同或相反的非零向量.

    ※零向量与任一向量平行.

    (7)相等向量:长度相等且方向相同的向量.

    2.向量加法运算:

    ⑴三角形法则的特点:首尾相连.

    ⑵平行四边形法则的特点:共起点

    【篇二】高一数学必修三知识点总结

    一、集合有关概念

    1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

    2、集合的中元素的三个特性:

    1.元素的确定性;

    2.元素的互异性;

    3.元素的无序性

    说明:

    (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

    (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

    (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

    (4)集合元素的三个特性使集合本身具有了确定性和整体性。

    3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

    1.用拉丁字母表示集合乱如携:A={我校的篮球队员},B={1,2,3,4,5}

    2.集合的表示方法:列举法与描述法。

    注意啊:常用数集及其记法:

    非负整数集(即自然数集)记作:N

    正整数集N*或N+整数集Z有理数集Q实数集R

    关于“属于”的概念

    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

    列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

    描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

    ①语言描述法:例:{不是直角三角形的三角形}

    ②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{xx-3>2}

    4、集合的分类:

    1.有限集含有有限个元素的集合

    2.无限集含有无限个元素的集合

    3.空集不含任何元素的集合例:{xx2=-5}

    二、集合间的基本关系

    1.“包含”关系—子集

    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

    2.“相等”关系(5≥5,且5≤5,则5=5)

    实例:设A={xx2-1=0}B={-1,1}“元素相同”

    结论:对于两个集橡闭合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

    ①任何一个集合是它本身的子集。AíA

    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

    ③如果AíB,BíC,那么AíC

    ④如果AíB同时BíA那么A=B

    3.不含任何元素的集合叫做空集,记为Φ

    规定:空集是任何集合的子集,空集是任何非空集合的真子集

    【篇三】高一数学必修三知识点总结

    一、高中数学函数的有关概念

    1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

    注意:

    函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1.

    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.

    (6)指数为零底不可以等于零,

    (7)实际问题中的函数的定义域还要保证实际问题有意义.

    相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

    2.高中数学函数值域:先考虑其定义域

    (1)观察法

    (2)配方法

    (3)代换法

    3.函数图象知识归纳

    (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

    (2)画法

    A、描点法:

    B、图象变换法

    常用变换方法有三种

    1)平移变换

    2)伸缩变换

    3)对称变换

    4.高中数学函数区间的概念

    (1)函数区间的分类:开区间、闭区间、半开半闭区间

    (2)无穷区间

    5.映射

    一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

    对于映射f:A→B来说,则应满足:

    (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

    (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

    (3)不要求函数B中的每一个元素在函数A中都有原象。

    6.高中数学函数之分段函数

    (1)在定义域的不同部分上有不同的解析表达式的函数。

    (2)各部分的自变量的取值情况.

    (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

    补充:复合函数

    如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

    猜你喜欢