高中数学思维?一、转化方法:高中数学八种思维方法如下:一、转化方法:转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,那么,高中数学思维?一起来了解一下吧。
一、数形结合思想
数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。
应用数形结合的思想,应注意以下数与形的转化:
(1)集合的运算及韦恩图;
(2)函数及其图象;
(3)数列通项及求和公式的函数特征及函数图象;
(4)方程(多指二元方程)及方程的曲线。
冲皮以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。
二、分类讨论思想
分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。
数学思维模式有以下几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应李橡谈遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、哪碰动静转换、分合相如世辅等。
数学教育的本质是素质教育。这不仅是因为数学是我们认识这个世界最重要、最基本的,还因为数学教育有着不可替代的、培育理性思维的育人价值。那么在数学教育过程中如何落实理性思维的培养,真正实现素质教育呢?
一、严谨是理性思维的基础——“粗心”是数学学习中一个很坏的借口
数学考试成绩出来,经常有学生感叹:“怎么这个题目错了”,“我都会的,就是粗心了”。听到这样的话,家长和老师往往就放心了,叮嘱一下以后不要粗心,好像问题就解决了。
而事实上没有一个人会希望在考试中粗心,大家都希望高质量地完成考试,但却总是避免不了各种错误。这是因为本质不是粗心,是能力问题。粗心这个词掩盖了很多实质性的问题。
我觉得粗心是大量实质性问题的不恰当归类。所谓的粗心,总体而言就是不严谨,其下位是学生在学习上的各种能力的缺陷。运算错了,是运算能力有问题;理解上出了偏差,是理解能力存在缺陷;考虑问题不全面,是逻辑不严密;表达上出纰漏,是表达能力的问题等。很多环节都有所谓的粗心,但我觉得我们不能用“粗心”一词简单地一笔带过,应该认识到这是涉及各个方面的能力问题。
要关注数学学习中能力培养的问题,其核心是良好的学习习惯和严谨的意识。我们以运算为例。
数学是一门抽象性、思维性极强的学科,数学学科可以有效培养学生的思维能力,同时要学好高中数学也需要有一定的数学思维能力。当今社会的竞争是人才的竞争,是人才的核心创新能力的竞争,而人的核心竞争力就与数学思维能力密切相关。
在当前新课程标准的改革下,越来越注重学生创新能力与思维能力的培养,这在一定程度上反映出应试教育背景下的高中数学教学不利于学生数学思维能力的培养。为了进一步促进学生数学思维能力的培养卜橡,本文在高中数学教学实践与总结经验教训的基础上,就数学思维能力的培养进行探讨。
一、对数学思维能力的有关内涵的理解
数学思维能力简称为数学思维,是指从数学的角度出发思考和解决问题的思维活动形式过程。数学思维能力不仅对数学学习至关重要,对于其他的学科如物理、化学等也十分重要。在我国初、高中数学课程标准中对思维能力都做出了比较具体的概括,主要是指观察力、动手实践、分析与总结归纳、抽象与概括、比较、猜想等各种能力的统一。
二、高中数学教学中数学思维能力培养的重要性
(一)能有效提高学生的数学成绩
在高中阶段,学生要做的最重要的事就是应对高考,考上一所好的大学直接关乎学生今后的发展。当前我国还是以考试成绩为录取人才的主要标准,学生的学习成绩还是很重要的。
导语:高中数学思维方法分享。思维是人脑对客观现实的概括和间接反映,数学思维就是数学地思考问题和解决问题的思维活动形式。数学思维就是数学地思考问题和解决问题的思维活动形式,也就是人们通常所指的数学思维能力,即能够用数学的观点去思考问题和解决问题的能力。
高中数学思维方法
第一:函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想:
(1)数学研乱族究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重侍稿突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4) 有分有合,先分后合,是分类整合思想的本质属性
(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
第四:化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的'解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 。
以上就是高中数学思维的全部内容,转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。二、。