初一到初三数学公式和定律?华罗庚说:“数缺形时少直观,形缺数时难入微”又说“要打好数学基础有两个必经过程:先学习、接受“由薄到厚”;再消化、提炼“由厚到北” 苏步青(大陆数学家)说:“学习数学要多做习题,边做边思索。那么,初一到初三数学公式和定律?一起来了解一下吧。
初一到初三,华东师大版数学的所有公式与定理
1 过两点有且只有一条直线 2 两点之间线段最短
3 同角或等角的补角相等 4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补
15 定理 三角形两边的和贺橡大于第三边 16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相禅好旁等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理袜枯2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();});
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360° 49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角
作者:李云熙2005-12-4 20:00 回复此发言
--------------------------------------------------------------------------------
2 几何公式和定理
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
初中数学公式定律如下:
1、过两点有且只有一条直线;两点之间线段最短;同角或衫亏等角的补角相等;同角或等角的余角相等;过一点有且只有一条直线和已知直线垂直
2、直线外一点与直线上各点连接的所有线段中,垂线段最短;平行公理 经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都和第三条直线平行,这两条直线也互相平行;同位角相等,两直线平行;内错角相等,两直线平行
3、同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;定理 三角形两边的和大于第三边;推论 三角形两边的差小于第三边
4、三角形内角和定理 三角形三个内角的和等于180°;推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角的和;推论3 三角形的一个外角大于任何一个和它不相邻的内角
5、全等三角形的对应边、对应角相等;边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等;角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等;推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
6、边边边公理(SSS) 有三边对应相等的两个三角形全等;斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7、定理1 在角的平分线上的点到这个角的两边的距离相等;定理2 到一个角的两边的距离相同的点,在这个角的平分线上
8、角的平分线是到角的两边距离相等的所有点的集合;等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)
9、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边;推论2 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合;推论3 等边三角形的各角都相等,并且每一个角都等于60°
10、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);推论1 三个角都相等的三角形是等边三角形;推论2 有一个角等于60°的等腰=角形是等边三角形
11、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半;直角三角形斜边上的中线铅塌扮等于斜边上的一半
12、定理 线段垂直平分线上的点和这条线段两个端点的距离相等;逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
13、定理1 关于某条直线对称的两个图形是全等形;定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
14、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
15、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
16、勾股定理的逆定理 如果三角形的三边长a、b、c有关系槐灶a^2+b^2=c^2,那么这个三角形是直角三角形
17、定理 四边形的内角和等于360°;四边形的外角和等于360°;多边形内角和定理 n边形的内角的和等于(n-2)×180°
18、推论 任意多边的外角和等于360°;平行四边形性质定理1 平行四边形的对角相等;平行四边形性质定理2 平行四边形的对边相等;推论 夹在两条平行线间的平行线段相等;平行四边形性质定理3 平行四边形的对角线互相平分
19、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形;平行四边形判定定理2 两组对边分别相等的四边形是平行四边形;平行四边形判定定理3 对角线互相平分的四边形是平行四边形;平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
20、矩形性质定理1 矩形的四个角都是直角;矩形性质定理2 矩形的对角线相等
21、矩形判定定理1 有三个角是直角的四边形是矩形;矩形判定定理2 对角线相等的平行四边形是矩形
22、菱形性质定理1 菱形的四条边都相等;菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)+2
23、菱形判定定理1 四边都相等的四边形是菱形;菱形判定定理2 对角线互相垂直的平行四边形是菱形
24、正方形性质定理1 正方形的四个角都是直角,四条边都相等;正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
25、定理1 关于中心对称的两个图形是全等的;定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
26、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
27、等腰梯形性质定理 等腰梯形在同一底上的两个角相等;等腰梯形的两条对角线相等;等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形
28、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
29、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰;推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
30、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
你好:
我收藏了一份初中数学公式手册(电子版)非笑磨常方便,感键念觉还不错,高中有时都能用到,方便的话可以联系我(656769022@qq.com)或者给我你的邮箱,稿升困我发给你。看过会你一定不会失望哒呵呵
很高兴认识~
数学可真是奇妙,数学可以使你快乐也可以使你极度烦恼。那么初一到初三的数学公式有哪些呢?下面是由我为大家整理的“初一到初三数学公式有哪些 ”,仅供参考,欢迎大家阅读。
初一到初三数学公式有哪些
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可码蚂念看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段迟困或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论物团 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹
拓展阅读:数学名人名言
爱因斯坦说:“数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险…数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。
你的问题太大了,写一部分
你参考
http://wenku.baidu.com/view/de9f86bff121dd36a32d82be.html
一次方程(组)与一次不等式(组)
1 算术解法与代数解法
11 两种解法的分析、对比
12 未知数和方程
用字母x、y、…等,表示所要求的数量,这些字母称为“未知数”
用运算符号把数或表示书的字母联结而成的式子,叫做代数式
含有未知数的等式,叫做方程
在一个方程中,所含未知数,又成为元;
被“+”、“-”号隔开的每一部分称为一项在一项中,数字或表示已知数的字母因数叫做未知数的系数
某一项所含有的未知数的指数和,成为这一项的次数
不含未知数的项,成为常数项当常数不为零时,它的次数是0,因此常数项也称为零次项
13 方程的解橡缓与解方程的根据
未知数应取的值是指:把所列方程中的未知数换成这个值以后,就使方程变成一个恒等式
能是方程左右两边的值相等的未知数的值,叫做方程的解,也叫做根
求方程解的过程,叫做解方程
解方程的根据是“运算通性”及“等式性质”
可以“由表及里”地去掉括号,并将“含有相同未知橡告数且含未知数的次数也相同”的各项结合起来,合并在一起—梁如明—这叫做合并同类项
把方程一边的任一项改变符号后,移到方程的另一边,叫做移项简单说就是“移项变号”
把方程两边各同除以未知数的系数(或同乘以系数的倒数),就得到未知数应取的值
综上所述,得到解方程的方法、步骤:去括号、移项变号、合并同类项,使方程化为最简形式ax=b(a!=0)、除以未知数的系数,得出x=b/a(a!=0)
2 一元一次方程
只含有一个未知数并且次数是1的方程,叫做一元一次方程一般形式:ax+b=0(a!=0,a、b是常数)
22 一元一次方程的解法
解一元一次方程的一般步骤是:
1 去分母(或化为整系数);
2 去括号;
3移项变号;
4 合并同类项,化为ax=-b(a!=0)的形式;
5 方程两边同除以未知数的系数,得出方程的解x=-b/a
以上就是初一到初三数学公式和定律的全部内容,26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1在角的平分线上的点到这个角的两边的距离相等 28、定理2到一个角的两边的距离相同的点,在这个角的平分线上 29、。