数学题七下?(2)平移三角形ABC,使点C移动到点F(7,-4),画出平移后的'三角形DEF,其中点D与点A对应,点E与点B对应.解:如图.22.(6分)苹果熟了,一个苹果从树上被抛下.如图所示,那么,数学题七下?一起来了解一下吧。
一、填空题:
1. 的算术平方根是.
2.如图,点A,B,C在一条直线上,已知1=53,2=37,则CD与CE的位置关系是.
3.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x,乙数为y,由题意可得方程组.
4.当a0时,不等式组 的解集是.
5.在平面直角坐标系中,点A(1,2)关于y轴对称的点为B (a,2),则a=.
6.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目,并制成如图所示的扇形图.那么喜爱跳绳的学生有人.
7.已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A,则A的坐标为.
8.请构造一个二元一次方程组,使它的解为 .这个方程组是.
9.如图,已知a‖b,小亮把三角御绝粗板的直角顶点放在直线b上.若1=40,则2的度数为.
10.如图,用同样规格的黑、白两色正方形瓷砖铺设地面,请观察图形回答问题:第n个图形中需用黑色瓷砖块.(用含n的代数式表示)
二、选择题:(请将正确答案的代号填在题后的括号内,每小题3分,共分30分)
11.下列运宏明算正确的是()
A. B.(-3)2=-9 C.2-3=8 D.20=0
12.若点P(1-m,m)在第二象限,则下列关系式正确的是()
A.00 D.m1
13.下列各方程组中,属于二元一次方程组的是()
A. B.
C. D.
14.若 =(x+y)2,则x-y的值为()
A.-1 B.1 C.2 D.3
15.某校对七年级的300名学生数学考试做一次镇镇调查,在某范围内的得分情况如图所示的扇形图,则在75分以下这一分数段中的人数为()
A.75人 B.125人 C.135人 D.165人
16.如图,已知3=4,要得到AB‖CD,需要添加的条件是()
A.1=4 B.3=2 C.1=2 D.1与2互补
17.在x=-4,-1,0,3中,满足不等式组 的x值是()
A.-4和0 B.-4和-1 C.0和3 D.-1和0
18.△DEF(三角形)是由△ABC平移得到的,点A(-1,-4)的对应点为D(1,-1),则点B(1,1)的对应点E,点C(-1,4)的对应点F的坐标分别为()
A.(2,2),(3,4) B.(3,4),(1,7) C.(-2,2),(1,7) D.(3,4),(2,-2)
19.已知 ,则xy的值是()
A.2 B.1 C.-1 D.-2
20.已知三条不同的直线a,b,c在同一平面内,下列四个命题:
①如果a‖b,ac,那么bc;
②如果b‖a,c‖a,那么b‖c;
③如果ba,ca,那么bc;
④如果ba,ca,那么b‖c.
其中是真命题的是()
A.①②③ B.①② C.①②④ D.①③
三、解答题(共66分)
19.(8分)计算:
(1)4-38+3-127;
解:原式=2-2+(-13)=-13.
(2)2(2-3)+|2-3|.
解:原式=22-23+3-2=2-3.
20.(8分)(1)解方程组:2x+5y=25,①4x+3y=15;② (2)解不等式:2x-13-1≤5x+12.
解:①×2,得4x+10y=50.③ 解:去分母,得2(2x-1)-6≤3(5x+1).
③-②,得7y=35,解得y=5. 去括号,得4x-2-6≤15x+3.
将y=5代入①,得x=0. 移项,得4x-15x≤3+2+6.
∴原方程组的解是x=0,y=5. 合并,得-11x≤11.
系数化为1,得x≥-1.
21.(6分)已知:如图所示的网格中,三角形ABC的顶点A(0,5),B(-2,2).
(1)根据A,B坐标在网格中建立平面直角坐标系,并写出点C坐标(2,3);
(2)平移三角形ABC,使点C移动到点F(7,-4),画出平移后的'三角形DEF,其中点D与点A对应,点E与点B对应.
解:如图.
22.(6分)苹果熟了,一个苹果从树上被抛下.如图所示,从A处落到了B处.(网格单位长度为1)
(1)写出A,B两点的坐标;
(2)苹果由A处落到B处,可看作由哪两次平移得到的?
解:(1)A(2,4),B(-1,-2).
(2)先向左平移3个单位长度,再向下平移6个单位长度.(或先向下平移6个单位长度,再向左平移3个单位长度)
23.(8分)如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD与BC平行吗?试写出推理过程;
(2)求∠DAC和∠EAD的度数.
解:(1)AD与BC平行.
∵AC平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°.
又∵∠D=100°,∴∠BCD+∠D=80°+100°=180°.∴AD‖BC.
(2)由(1)知AD‖BC,∴∠DAC=∠ACB=40°.
∵∠BAC=70°,∴∠B=70°.
∴∠EAD=∠B=70°.
24.(8分)在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A,B两组捐款户数的比为1∶5.
捐款户数分组统计表,
组别 捐款数(x)元 户数
A 1≤x<100 a
B 100≤x<200 10
C 200≤x<300 20
D 300≤x<400 14
E x≥400 4
)
请结合以上信息解答下列问题:
(1)a=2.本次调查的样本容量是50;
(2)补全捐款户数统计表和统计图;
(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少?
解:(2)补全捐款户数统计图如图:
(3)600×(28%+8%)=600×36%=216(户).
答:不少于300元的有216户.
25.(10分)(株洲中考)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
解:(1)设孔明同学测试成绩为x分,平时成绩为y分,由题意,得
x+y=185,80%x+20%y=91.解得x=90,y=95.
答:孔明同学测试成绩为90分,平时成绩为95分.
(2)不可能.由题意可得:80-70×80%=24,24÷20%=120>100,故不可能.
(3)设平时成绩为满分,即100分,综合成绩为100×20%=20.
设测试成绩为a分,根据题意,可得
20+80%a≥80,解得a≥75.
答:他的测试成绩应该至少为75分.
26.(12分)如图1,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.
(1)写出点C,D的坐标并求出四边形ABDC的面积;
(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由;
(3)如图2,点P是直线BD上一个动点,连接PC,PO,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD,∠POB的数量关系.
解:(1)C(0,2),D(4,2).
S四边形ABDC=AB•OC=4×2=8.
(2)存在,当BF=12CD时,三角形DFC的面积是三角形DFB面积的2倍.
∵C(0,2),D(4,2),
∴CD=4,BF= CD=2.
∵B(3,0),
∴F(1,0)或(5,0).
(3)当点P在线段BD上运动时:∠OPC=∠PCD+∠POB;
当点P在BD延长线上运动时:∠OPC=∠POB-∠PCD;
当点P在DB延长线上运动时:∠OPC=∠PCD-∠POB.
初一数学试题
一、填空题(2分×15分=30分)
1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 .
2、计算:①100×103×104 = ;②-2a3b4÷12a3b2 = .
3、(8xy2-6x2y)÷(-2x)= .
4、(-3x-4y) ·( ) = 9x2-16y2.
5、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 .
6、如果x+y=6, xy=7, 那么x2+y2= .
7、有资料表明,被称为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为______________公顷.
8、 太阳的半径是6.96×104千米,它是精确到_____位,有效数字有_________个.
9、 小明在一个小正方体的六个面上宴穗分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出的数字小于7)=_______.
10、图(1),当剪子口∠AOB增大15°时,∠COD增大 .
11、吸管吸易拉罐内的饮料时,如图(2),∠1=110°,则∠2= ° (易拉罐的上下底面互相平行)
图(1) 图(2) 图(3)
12、平行的大楼顶部各有一个射橡祥兆灯,当光柱相交时,如图(3),∠1+∠2+∠3=________°
二、选择题(3分×6分=18分)(仔细审题,小心陷井!)
13、若x 2+ax+9=(x +3)2,则a的值为 ( )
(A) 3 (B) ±3 (C) 6 (D)±6
14、如图,长方形的长为a,宽为b,横向阴影部分为长方形,
另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面
积是( )
(A) ab-bc+ac-c 2 (B) ab-bc-ac+c 2
(C) ab- ac -bc (D) ab-ac-bc-c 2
15、下列计算 ① (-1)0=-1 ②-x2.x3=x5③ 2×2-2= ④ (m3)3=m6
⑤(-a2)m=(-am)2正确的有………………………………( )
(A) 1个 (B) 2个 (C) 3个 (D) 4个
图a 图b
16、 如图,下列判断中错误的是 ( )
(A) ∠A+∠ADC=180°—→AB‖CD
(B) AB‖CD—→∠ABC+∠C=180°
(C) ∠1=∠2—→AD‖BC
(D) AD‖BC—→∠3=∠4
17、如图b,a‖b,∠1的度数是∠2的一半,则∠3等于 ( )
(A) 60° (B) 100° (C) 120 (D) 130°
18、一个游戏的中奖率是1%,小花买100张奖券,下列说法正确的是 ( )
(A)一定会中奖 (B)一定不中奖(C)中奖的可能性大(D)中奖的可能性小
三、解答题:(写出必要的演算过程及推理过程)
(一)计算:(5分×3=15分)
19、123²-124×122(利用整式乘法公式进行计算)
20、 9(x+2)(x-2)-(3x-2)2 21、 0.125100×8100
22、某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?若10滴这种杀虫剂为 升,问:要用多少升杀虫剂?(6分)
24、一个角的补角比它的余角的二倍还多18度,这个角有多少度?(5分)
2007年七年级数学期中试卷
(本卷满分100分 ,完卷时间90分钟梁租)
姓名: 成绩:
一、 填空(本大题共有15题,每题2分,满分30分)
1、如图:在数轴上与A点的距离等于5的数为 .
2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位.
3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 .
4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元.
5、当a=-2时,代数式 的值等于 .
6、代数式2x3y2+3x2y-1是 次 项式.
7、如果4amb2与 abn是同类项,那么m+n= .
8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 .
9、如果∣x-2∣=1,那么∣x-1∣= .
10、计算:(a-1)-(3a2-2a+1) = .
11、用计算器计算(保留3个有效数字): = .
12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次).
2,6,7,8.算式 .
13、计算:(-2a)3 = .
14、计算:(x2+ x-1)•(-2x)= .
15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= .(不能用计算器,结果中保留幂的形式)
二、选择(本大题共有4题,每题2分,满分8分)
16、下列说法正确的是…………………………( )
(A)2不是代数式 (B) 是单项式
(C) 的一次项系数是1 (D)1是单项式
17、下列合并同类项正确的是…………………( )
(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab
18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( )
A、 B、 -1 C、 D、以上答案不对
19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式
|a + b| - 2xy的值为( )
A. 0 B.-2 C.-1 D.无法确定
三、解答题:(本大题共有4题,每题6分,满分24分)
20、计算:x+ +5
21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-
22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分)
(1)
(2) ;
(3)由(1)、(2)你有什么发现或想法?
23、已知:A=2x2-x+1,A-2B = x-1,求B
四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分)
24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a
求:(1)梯形ADGF的面积
(2)三角形AEF的面积
(3)三角形AFC的面积
25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形
拼成一个正方形,求图形中央的小正方形的面积,你不难找到
解法(1)小正方形的面积=
解法(2)小正方形的面积=
由解法(1)、(2),可以得到a、b、c的关系为:
26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费.
(1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分)
(2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)
27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人.如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物.
求:(1)所有队员赠送的礼物总数.(用m的代数式表示)
(2)当m=10时,赠送礼物的总数为多少件?
28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%.那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少?
2006年第一学期初一年级期中考试
数学试卷答案
一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3
7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6
11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1
二、16、D 17、B 18、B 19、D
三、20、原式= x+ +5 (1’)
= x+ +5 (1’)
= x+ +5 (1’)
= x+4x-3y+5 (1’)
= 5x-3y+5 (2’)
21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’)
= x4-16-x4+4x2-4 (1’)
= 4x2-20 (1’)
当x = 时,原式的值= 4×( )2-20 (1’)
= 4× -20 (1’)
=-19 (1’)
22、原式=x2-2x+1+x2-9+x2-4x+3 (1’)
=3x2-6x-5 (1’)
=3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可)
=3×2-5 (1’)
=1 (1’)
23、 A-2B = x-1
2B = A-(x-1) (1’)
2B = 2x2-x+1-(x-1) (1’)
2B = 2x2-x+1-x+1 (1’)
2B = 2x2-2x+2 (1’)
B = x2-x+1 (2’)
24、(1) (2’)
(2) (2’)
(3) + - - = (3’)
25、(1)C2 = C 2-2ab (3’)
(2)(b-a)2或者b 2-2ab+a 2 (3’)
(3)C 2= a 2+b 2 (1’)
26、(25)2 = a2 (1’)
a = 32 (1’)
210 = 22b (1’)
b = 5 (1’)
原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’)
= a2- b2- a2- ab- b2 (1’)
=- ab- b2 (1’)
当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’)
若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以.
27、解(1):第一小队送给第二小队共(m+2)•m件 (2’)
第二小队送给第一小队共m•(m+2)件 (2’)
两队共赠送2m•(m+2)件 (2’)
(2):当m = 2×102+4×10=240 件 (2’)
28、设:1997年商品价格为x元 (1’)
1998年商品价格为(1+5%)x元 (1’)
1999年商品价格为(1+5%)(1+10%)x元 (1’)
2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’)
=0.0164=1.64% (2’)
答:2000年比1997年涨价1.64%. (1’)
初一数学竞赛试题 一. 选择题(每小题5分,共50分)以下每题的四个结论中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内. 1. 数a的任意正奇数次幂都等于a的相反数,则( ) A. B. C. D. 不存在这样的a值 2. 如图所示,在数轴上有六个点,且 ,则与点C所表示的数最接近的整数是( ) A. B. 0 C. 1 D. 2 (根据深圳市南山区蛇口中学王远征供题改编) 3. 我国古代伟大的数学家祖冲之在1500年以前就已经相当精确地算出圆周率 是在3.1415926和3.1415927之间,并取 为密率、 为约率,则( ) A. B. C. D. 4. 已知x和y满足 ,则当 时,代数式 的值是( ) A. 4 B. 3 C. 2 D. 1 5. 两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( ) A. 273 B. 819 C. 1911 D. 3549 6. 用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为( )米 A. B. C. D. 7. If we let be the greatest prime number not more than a ,then the result of the expression is ( ) A. 1333 B. 1999 C. 2001 D. 2249 (英汉词典:greatest prime number最大的质数;result结果;expression表达式) 8. 古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸.地支也有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行: 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥…… 从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,则当第2次甲和子在同一列时,该列的序号是( ) A. 31 B. 61 C. 91 D. 121 9. 满足 的有理数a和b,一定不满足的关系是( ) A. B. C. D. 10. 已知有如下一组x,y和z的单项式: , 我们用下面的方法确定它们的先后次序;对任两个单项式,先看x的幂次,规定x幂次高的单项式排在x幂次低的单项式的前面;再看y的幂次,规定y的幂次高的排在y的幂次低的前面;再看的z幂次,规定的z幂次高的排在z的幂次低的前面. 将这组单项式按上述法则排序,那么, 应排在( ) A. 第2位 B. 第4位 C. 第6位 D. 第8位 二. 填空题(每小题6分,共60分) 11. 一个锐角的一半与这个锐角的余角及这个锐角的补角的和等于平角,则这个锐角的度数___________. 12. If ,then result of is ________. 13. 已知:如图1, 中,D、E、F、G均为BC边上的点,且 , , .若 1,则图中所有三角形的面积之和为_____. 14. 使关于x的方程 同时有一个正根和一个负根的整数a的值是______. 15. 小明的哥哥过生日时,妈妈送了他一件礼物:即三年后可以支取3000元的教育储蓄.小明知道这笔储蓄年利率是3%(按复利计算),则小明妈妈为这件生日礼物在银行至少要存储________元.(银行按整数元办理存储) 16. m为正整数,已知二元一次方程组 有整数解,即x,y均为整数,则 __________. 17. 已知:如图2,长方形ABCD中,F是CD的中点, , .若长方形的面积是300平方米,则阴影部分的面积等于____平方米. 18. 一幅图象可以看成由m行n列个小正方形构成的大矩形,其中每个小正方形称为一个点,每个点的颜色是若干个颜色中的一个,给定了m,n以及每个点的颜色就确定了一幅图象.现在,用一个字节可以存放两个点的颜色.那么当m和n都是奇数时,至少需要_____个字节存放这幅图象的所有点的颜色. 19. 在正整数中,不能写成三个不相等的合数之和的最大奇数是_____________. 20. 在密码学中,称直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码.对于英文,人们将26个字母按顺序分别对应整数0到25,现有4个字母构成的密码单词,记4个字母对应的数字分别为 ,已知:整数 , , , 除以26的余数分别为9,16,23,12,则密码的单词是_________. 三. 解答题(21、22题各13分,23题14分,共40分)要求:写出推算过程. 21. 有依次排列的3个数:3,9,8,对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9, ,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9, , ,9,8,继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少? 22. 如图3, .证明: 23. 一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元? 〖答案〗 一. 选择题: 1. A 2. C 3. C 4. D 5. B 6. C 7. B 8. B 9. A 10. D 二. 填空题(本大题共60分.对于每个小题,答对,得6分;答错或不答,不给分) 11. 12. 12 13. 7 14. 0 15. 2746 16. 4 17. 137.5 18. 19. 17 20. hope 三. 解答题: 21. 一个依次排列的n个数组成一个n一数串: , 依题设操作方法可得新增的数为: 所以,新增数之和为: 原数串为3个数:3,9,8 第1次操作后所得数串为:3,6,9, ,8 根据(*)可知,新增2项之和为: 第2次操作后所得数串为: 3,3,6,3,9, , ,9,8 根据(*)可知,新增2项之和为: 按这个规律下去,第100次操作后所得新数串所有数的和为: 22. 证法1:因为 , 所以 (两直线平行,同旁内角互补) 过C作 (如图1) 因为 ,所以 (平行于同一条直线的两条直线平行) 因为 ,有 ,(两直线平行,内错角相等) 又因为 ,有 ,(两直线平行,内错角相等) 所以 (周角定义) 所以 (等量代换) 证法2:因为 , 所以 (两直线平行,同旁内角互补) 过C作 (如图2) 因为 ,所以 (平行于同一条直线的两条直线平行) 因为 ,有 ,(两直线平行,同旁内角互补) 又因为 ,有 ,(两直线平行,同旁内角互补) 所以 所以 (等量代换) 23. 设小熊和小猫的个数分别为x和y,总售价为z,则 (*) 根据劳力和原材料的限制,x和y应满足 化简为 及 当总售价 时,由(*)得 得 得 , 即 得 得 , 即 综合(A)、(B)可得 ,代入(3)求得 当 时,有 满足工时和原料的约束条件,此时恰有总售价 (元) 答:只需安排生产小熊14个、小猫24个,就可达到总售价为2200元.,2,12x3=36,2,α+β≥123456789,0,
小明家离火车站很近,他每天都可以根据车站大楼的钟声起床。车站大楼的钟,每敲响一下延时3 秒,间隔1 秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明贺码明确切判断出已是清晨6 点,前后共经过了几秒钟?
1. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、激哪3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取拍烂法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25x2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答余敏碰案竖谈:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57
(15) 83x-49y=82
59x+y=2183
答案:拿厅x=37 y=61
(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25
(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93
(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59
(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34
(20) 70x+13y=3520
52x+y=2132
答案:x=41 y=50
http://wenku.baidu.com/view/e2d99c6648d7c1c708a145b8.html
小明家离火车站很近,他每天都可以根据车站大楼的钟声起床。车站大楼的钟,每敲响一下延时3 秒,间隔1 秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明确切判断出已是清晨6 点,前后共经过了几秒钟?
1. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生答慧3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方此腊式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙清扒答两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25x2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
以上就是数学题七下的全部内容,17.有这样一道题“计算(2x3-3x2y-2xy2)-(x3-2xy2+y2)+(-x3-3x2y-y2)的值,其中x=,y=-1。”甲同学把x=错抄成x=-,但他计算的结果也是正确的,你说这是怎么回事呢?18.如图,AB‖CD。