数学二项式定理?二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664年-1665年间提出。该定理给出:两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。对于二项式展开式,那么,数学二项式定理?一起来了解一下吧。
二项式定理是高中数学选修2-3第一章第5节。二项式定理(英语:binomialtheorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
恒等式(identities),数学概念,恒等式是无论其变量如何取值,等式永远成立的算式。恒等式成立的范围是左右函数定义域的公共部分,两个独立的函数却各自有定义域,与x在非负实数集内是恒等的,而在实数集内是不恒等的。
(a+b)的n次方为二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)*b+C(n,2)a^(n-2)*b^2+...+C(n,n)b^n。
a+b的n次方,即二项式。二项式定理是代数学中的一个重要定理,用于展开形如 (a + b)^n 的表达式。它提供了一种简洁和有效的方法来计算任意非负整数次幂的二项式系数。二项式定理的完整表述为:
(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n
其中,C(n, k) 表示组合数,也称为二项式系数,表示从 n 个元素中选取 k 个元素的组合数。组合数可以用下式表示:C(n, k) = n! / (k! * (n-k)!)其中 n! 表示阶乘,n! = n * (n-1) * (n-2) * ... * 2 * 1。二项式定理的应用广泛,主要体现在以下几个方面:
1、展开多项式:通过二项式定理,我们可以快速展开 (a + b)^n 这样的多项式,并得到每一项的系数。
二项式定理指的是:
二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定。
二项式定理的意义:
牛顿以二项式定理作为基石发明出了微积分,其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。这个定理在遗传学中也有其用武之地。
具体应用范围为推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。
二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。
该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
定理的意义:
牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。
这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。
二项式定理(英语:binomial theorem),又称牛顿二项式定理。
由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理
知识扩展:
发展简史
二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。
此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。
贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。14世纪初,朱世杰在其《四元玉鉴》中复载此图,并增加了两层,添上了两组平行的斜线。
以上就是数学二项式定理的全部内容,二项式定理(英语:binomial theorem),又称牛顿二项式定理。由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂。