八下数学题?(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: 。 五、那么,八下数学题?一起来了解一下吧。
(1)“5.12”汶川地震发生后,威海某厂决定为灾区无偿生产活动板房。已知某种大型号铁皮,每张可生产12个房身或18个房底。现该厂库存49张这种铁皮,问怎样安排生产房身与房底的铁皮张数,能使生产的房身与房底配套(一张铁皮只能生产一种产品,一个房身配上两个房底)?
解:设应用X长做房身,Y张做房底合理。
X+Y=49; 18Y=2*12X; 解方程 X=21Y=28答:用21张铁皮生产房身,用28张铁皮生产房底。
(2)小明每天早晨在同一时刻从家里骑车去学校,如果以9km/时的速度,可提前20分钟到校.;如果以6千米/时的速度行驶,则迟到20分钟到达学校。求小明家到学校的距离.
设小明的家到学校的距离为X千米 X/9+20/60=X/6-20/60 X/9-X/6=2/3 X/18=2/3 X=12
小明的家到学校的距离为12米
(3)重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
解:设第一种商品的单价为x元,则第二种商品的单价为(x+300)元。
由题意,得900/x =1500/(x+300)
解得x =450
所以x+300=450+300=750
答:第一种商品的单价为450元,第二种商品的单价为750元.
(4)汽车往返于A、B两地,途径高地C(A至C是上坡,C至B是下坡),汽车上坡时的速度为25千米/小时。
八年级下册数学好题难题精选
分式:
一:如果abc=1,求证 + + =1
解:原式= + +
= + +
=
=1
二:已知 + = ,则 + 等于多少?
解: + =
=
2( ) =9
2 +4 +2 =9
2( )=5
=
+ =
三:一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。向容器中注满水的全过程共用时间t分。求两根水管各自注水的速度。
解:设小水管进水速度为x,则大水管进水速度为4x。
由题意得:
解之得:
经检验得: 是原方程解。
∴小口径水管速度为 ,大口径水管速度为 。
四:联系实际编拟一道关于分式方程 的应用题。要求表述完整,条件充分并写出解答过程。
解略
五:已知M= 、N= ,用“+”或“-”连结M、N,有三种不同的形式,M+N、M-N、N-M,请你任取其中一种进行计算,并简求值,其中x:y=5:2。
解:选择一: ,
当 ∶ =5∶2时, ,原式= .
选择二: ,
当 ∶ =5∶2时, ,原式= .
选择三: ,
当 ∶ =5∶2时, ,原式= .
反比例函数:
一:一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:
(1)求y与x之间的函数关系式;
(2)“E”图案的面积是多少?
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.
解:(1)设函数关系式为
∵函数图象经过(10,2) ∴ ∴k=20, ∴
(2)∵ ∴xy=20, ∴
(3)当x=6时,
当x=12时,
∴小矩形的长是6≤x≤12cm,小矩形宽的范围为
二:是一个反比例函数图象的一部分,点 , 是它的两个端点.
1
1
10
10
A
B
O
x
y
(1)求此函数的解析式,并写出自变量 的取值范围;
(2)请你举出一个能用本题的函数关系描述的生活实例.
解:(1)设 , 在图象上, ,即 ,
,其中 ;
(2)答案不唯一.例如:小明家离学校 ,每天以 的速度去上学,那么小明从家去学校所需的时间 .
三:如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数 的图象上,则图中阴影部分的面积等于.
答案:r=1
S=πr²=π
四:如图11,已知正比例函数和反比例函数的图像都经过点M(-2, ),且P( ,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
图11
图12
解:(1)设正比例函数解析式为 ,将点M( , )坐标代入得 ,所以正比例函数解析式为
同样可得,反比例函数解析式为
(2)当点Q在直线DO上运动时,
设点Q的坐标为 ,
于是 ,
而 ,
所以有, ,解得
所以点Q的坐标为 和
(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,
而点P( , )是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.
因为点Q在第一象限中双曲线上,所以可设点Q的坐标为 ,
由勾股定理可得 ,
所以当 即 时, 有最小值4,
又因为OQ为正值,所以OQ与 同时取得最小值,
所以OQ有最小值2.
由勾股定理得OP= ,所以平行四边形OPCQ周长的最小值是
.
五:如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点8,与反比例函数y一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C作CE上y轴于E,过点D作DF上X轴于F.
(1)求m,n的值;
(2)求直线AB的函数解析式;
勾股定理:
一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步: =m;第二步: =k;第三步:分别用3、4、5乘以k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
解:(1)当S=150时,k= = =5,
所以三边长分别为:3×5=15,4×5=20,5×5=25;
(2)证明:三边为3、4、5的整数倍,
设为k倍,则三边为3k,4k,5k,
而三角形为直角三角形且3k、4k为直角边.
其面积S= (3k)·(4k)=6k2,
所以k2= ,k= (取正值),
即将面积除以6,然后开方,即可得到倍数.
二:一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()
A.第4张B.第5张C.第6张D.第7张
答案:C
三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的 处目测得点与甲、乙楼顶 刚好在同一直线上,且A与B相距 米,若小明的身高忽略不计,则乙楼的高度是米.
20米
乙
C
B
A
甲
10米
?米
20米
答案:40米
四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷 和世界级自然保护区星斗山 位于笔直的沪渝高速公路 同侧, 、 到直线 的距离分别为 和 ,要在沪渝高速公路旁修建一服务区 ,向 、 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图( 与直线 垂直,垂足为 ), 到 、 的距离之和 ,图(2)是方案二的示意图(点 关于直线 的对称点是 ,连接 交直线 于点 ), 到 、 的距离之和 .
(1)求 、 ,并比较它们的大小;
(2)请你说明 的值为最小;
(3)拟建的恩施到张家界高速公路 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系, 到直线 的距离为 ,请你在 旁和 旁各修建一服务区 、 ,使 、 、 、 组成的四边形的周长最小.并求出这个最小值.
B
A
P
X
图(1)
Y
X
B
A
Q
P
O
图(3)
B
A
P
X
图(2)
解:⑴图10(1)中过B作BC⊥AP,垂足为C,则PC=40,又AP=10,
∴AC=30
在Rt△ABC 中,AB=50 AC=30 ∴BC=40
∴ BP=
S1=
⑵图10(2)中,过B作BC⊥AA′垂足为C,则A′C=50,
又BC=40
∴BA'=
由轴对称知:PA=PA'
∴S2=BA'=
∴ ﹥
(2)如 图10(2),在公路上任找一点M,连接MA,MB,MA',由轴对称知MA=MA'
∴MB+MA=MB+MA'﹥A'B
∴S2=BA'为最小
(3)过A作关于X轴的对称点A', 过B作关于Y轴的对称点B',
连接A'B',交X轴于点P, 交Y轴于点Q,则P,Q即为所求
过A'、 B'分别作X轴、Y轴的平行线交于点G,
A'B'=
∴所求四边形的周长为
D
C
E
B
G
A
F
五:已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且 .
(1)求证: ;
(2)若 ,求AB的长.
解:(1)证明: 于点 ,
D
C
E
B
G
A
F
.
,
.
连接 ,
AG=AG,AB=AF,
.
.
(2)解:∵AD=DC,DF⊥AC,
.
.
,
.
.
四边形:
一:如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
(1) 当AB≠AC时,证明四边形ADFE为平行四边形;
E
F
D
A
B
C
(2) 当AB = AC时,顺次连结A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
解:(1)∵△ABE、△BCF为等边三角形,
∴AB = BE = AE,BC = CF = FB,∠ABE = ∠CBF = 60°.
∴∠FBE = ∠CBA.
∴△FBE ≌△CBA.
∴EF = AC.
又∵△ADC为等边三角形,
∴CD = AD = AC.
∴EF = AD.
同理可得AE = DF.
∴四边形AEFD是平行四边形.
(2) 构成的图形有两类,一类是菱形,一类是线段.
当图形为菱形时,∠ BAC≠60°(或A与F不重合、△ABC不为正三角形)
当图形为线段时,∠BAC = 60°(或A与F重合、△ABC为正三角形).
二:如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF。
1.a、b、c是正整数,a>b,且a2-ab-ac+6c=7,则a-c等于( )
(A)-1(B)-1或-7(C)1(D)1或7
2.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,排在第13个的四位数是()
(A)4 527(B)5247(C)5 742(D)7 245
3.1989年我国的GDP(国民生产总值)只相当于英国的53.5%,目前已相当于英国的81%.如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()
(A)1.5倍(B)1.5m倍(C)27.5倍(D)m倍
4.若x取整数,则使分式 的值为整数的x值有( ).
(A)3个(B)4个(C)6个(D)8个
5.已知。为整数,关于x的方程a2x-20=0的根是质数,且满足|ax2-7|>a2,则a等于()
(A)2:(B)2或5(C)±2(D)-2
6.如图,已知Rt△ABC,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有( )
(A)2个(B)4个 (C)6个(D)8个
7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()
(A)570(B)502(C)530(D)538
8.在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()
(A)AB-AD>CB-CD(B)AB-AD=CB-CD
(C)AB-AD 二、填空题(每小题7分,共84分) 9.多项式x2+y2-6x+8y+7的最小值为 10.已知 =1,则 的值等于 11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为 mm. 12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为 13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算 (α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中确有一个是正确的答案,则α+β+γ= 14.设a为常数,多项式x3+ax2+1除以x2-1所得的余式为x+3,则a= 15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC= 度. 16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)门课程,最后平均成绩为 分. 17.已知a+b+c=0,a>b>c,则 的范围是 18.计算器上有一个倒数键1/x,能求出输入的不为零的数的倒数(注:有时需先按shift或2nd键,再按1/x键,才能实现此功能,下面不再说明).例如,输入2,按下键1/x,则得0.5.现在计算器上输入某数,再依下列顺序按键:1/x -1 =1/x-1= , 在显示屏上的结果是-0.75,则原来输入的某数是 • 19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买 只。 很多学生到了 八年级 数学成绩开始下降,其实很大一部分原因是没有掌握好课本的基础知识。下面是我整理的八年级下册数学测试卷及答案解析,欢迎阅读分享,希望对大家有所帮助。 八年级下册数学测试卷及答案 一、选择题: 1.下列各式从左到右,是因式分解的是() A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1 C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2 【考点】因式分解的意义. 【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用排除法求解. 【解答】解:A、是多项式乘法,不是因式分解,故本选项错误; B、结果不是积的形式,故本选项错误; C、不是对多项式变形,故本选项错误; D、运用完全平方公式分解x2﹣4x+4=(x﹣2)2,正确. 故选D. 【点评】这类问题的关键在于能否正确应用分解因式的定义来判断. 2.下列四个图形中,既是轴对称图形又是中心对称图形的是() A.B.C.D. 【考点】中心对称图形;轴对称图形. 【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:A、不是轴对称图形,是中心对称图形; B、是轴对称图形,也是中心对称图形; C、是轴对称图形,不是中心对称图形; D、是轴对称图形,不是中心对称图形. 故选B. 【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.下列多项式中不能用平方差公式分解的是() A.a2﹣b2B.﹣x2﹣y2C.49x2﹣y2z2D.16m4n2﹣25p2 【考点】因式分解﹣运用公式法. 【分析】能用平方差公式分解的式子的特点是:两项都是平方项,符号相反. 【解答】解:A、符合平方差公式的特点; B、两平方项的符号相同,不符和平方差公式结构特点; C、符合平方差公式的特点; D、符合平方差公式的特点. 故选B. 【点评】本题考查能用平方差公式分解的式子的特点,两平方项的符号相反是运用平方差公式的前提. 4.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为() A.x>0B.x<0C.x<2D.x>2 【考点】一次函数与一元一次不等式. 【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集. 【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小, 所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2. 故选C. 【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合. 5.使分式有意义的x的值为() A.x≠1B.x≠2C.x≠1且x≠2D.x≠1或x≠2 【考点】分式有意义的条件. 【分析】根据分式有意义,分母不等于0列不等式求解即可. 【解答】解:由题意得,(x﹣1)(x﹣2)≠0, 解得x≠1且x≠2. 故选C. 【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分子为零且分母不为零. 6.下列是最简分式的是() A.B.C.D. 【考点】最简分式. 【分析】先将选项中能化简的式子进行化简,不能化简的即为最简分式,本题得以解决. 【解答】解:,无法化简,,, 故选B. 【点评】本题考查最简分式,解题的关键是明确最简分式的定义. 7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是() A.6B.7C.8D.9 【考点】等腰三角形的判定. 【专题】分类讨论. 【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰. 【解答】解:如上图:分情况讨论. ①AB为等腰△ABC底边时,符合条件的C点有4个; ②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个. 故选:C. 【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想. 8.若不等式组的解集是x<2,则a的取值范围是() A.a<2B.a≤2C.a≥2D.无法确定 【考点】解一元一次不等式组. 【专题】计算题. 【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围. 【解答】解:由(1)得:x<2 因为不等式组的解集是x<2 ∴a≥2 故选:C. 【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数. 9.下列式子:(1);(2);(3);(4),其中正确的有() A.1个B.2个C.3个D.4个 【考点】分式的基本性质. 【分析】根据分式的基本性质作答. 【解答】解:(1),错误; (2),正确; (3)∵b与a的大小关系不确定,∴的值不确定,错误; (4),正确. 故选B. 【点评】在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求. 10.某煤矿原计划x天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为() A.==﹣3B.﹣3 C.﹣3D.=﹣3 【考点】由实际问题抽象出分式方程. 【分析】设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,等量关系为:原计划工作效率=实际工作效率﹣3,依此可列出方程. 【解答】解:设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤, 根据题意得,=﹣3. 故选D. 【点评】本题考查由实际问题抽象出分式方程,关键设出天数,以工作效率作为等量关系列方程. 二、填空题: 11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1). 【考点】提公因式法与公式法的综合运用. 【分析】把(x﹣y)看作一个整体并提取,然后再利用平方差公式继续分解因式即可. 【解答】解:x2(x﹣y)+(y﹣x) =x2(x﹣y)﹣(x﹣y) =(x﹣y)(x2﹣1) =(x﹣y)(x+1)(x﹣1). 故答案为:(x﹣y)(x+1)(x﹣1). 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12.当x=﹣2时,分式无意义.若分式的值为0,则a=﹣2. 【考点】分式的值为零的条件;分式有意义的条件. 【分析】根据分母为零,分式无意义;分母不为零,分式有意义,分子为零分母不为零分式的值为零,可得答案. 【解答】解:∵分式无意义, ∴x+2=0, 解得x=﹣2. ∵分式的值为0, ∴, 解得a=﹣2. 故答案为:=﹣2,﹣2. 【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义?分母为零;分式有意义?分母不为零;分式值为零?分子为零且分母不为零. 13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6. 【考点】线段垂直平分线的性质. 【专题】计算题;压轴题. 【分析】运用线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表示出线段之间的数量关系,联立关系式后求解. 【解答】解:∵DE是BC边上的垂直平分线, ∴BE=CE. ∵△EDC的周长为24, ∴ED+DC+EC=24,① ∵△ABC与四边形AEDC的周长之差为12, ∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12, ∴BE+BD﹣DE=12,② ∵BE=CE,BD=DC, ∴①﹣②得,DE=6. 故答案为:6. 【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等. 14.若4a4﹣ka2b+25b2是一个完全平方式,则k=±20. 【考点】完全平方式. 【分析】根据4a4﹣ka2b+25b2是一个完全平方式,利用此式首末两项是2a2和5b这两个数的平方,那么中间一项为加上或减去2a2和5b积的2倍,进而求出k的值即可. 【解答】解:∵4a4﹣ka2b+25b2是一个完全平方式, ∴4a4﹣ka2b+25b2=(2a2±5b)2, =4a4±20a2b+25b2. ∴k=±20, 故答案为:±20. 【点评】此题主要考查的是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣. 【考点】扇形面积的计算. 【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得. 【解答】解:连接OC,作OM⊥BC,ON⊥AC. ∵CA=CB,∠ACB=90°,点O为AB的中点, ∴OC=AB=1,四边形OMCN是正方形,OM=. 则扇形FOE的面积是:=. ∵OA=OB,∠AOB=90°,点D为AB的中点, ∴OC平分∠BCA, 又∵OM⊥BC,ON⊥AC, ∴OM=ON, ∵∠GOH=∠MON=90°, ∴∠GOM=∠HON, 则在△OMG和△ONH中, , ∴△OMG≌△ONH(AAS), ∴S四边形OGCH=S四边形OMCN=()2=. 则阴影部分的面积是:﹣. 故答案为:﹣. 【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键. 三、解答题 16.(21分)(2016春?成都校级期中)(1)因式分解:2x2y﹣4xy2+2y3; (2)解方程:=+; (3)先化简,再求值(﹣x+1)÷,其中; (4)解不等式组,把解集在数轴上表示出来,且求出其整数解. 【考点】分式的化简求值;提公因式法与公式法的综合运用;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;一元一次不等式组的整数解. 【分析】(1)先提公因式,然后根据完全平方公式解答; (2)去分母后将原方程转化为整式方程解答. (3)将括号内统分,然后进行因式分解,化简即可; (4)分别求出不等式的解集,找到公共部分,在数轴上表示即可. 【解答】解:(1)原式=2y(x2﹣2xy+y2) =2y(x﹣y)2; (2)去分母,得(x﹣2)2=(x+2)2+16 去括号,得x2﹣4x+4=x2+4x+4+16 移项合并同类项,得﹣8x=16 系数化为1,得x=﹣2, 当x=﹣2时,x+2=0,则x=﹣2是方程的增根. 故方程无解; (3)原式=[﹣]? =? =? =﹣, 当时,原式=﹣=﹣=﹣; (4) 由①得x<2, 由②得x≥﹣1, 不等式组的解集为﹣1≤x<2, 在数轴上表示为 . 【点评】本题考查的是分式的化简求值、因式分解、解一元一次不等式组、在数轴上表示不等式组的解集,考查内容较多,要细心解答. 17.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1). (1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标; (2)画出△A1B1C1以点O为旋转中心、顺时针方向旋转90度的△A2B2C2,并求出点C1经过的路径的长度. 【考点】作图﹣旋转变换;作图﹣平移变换. 【分析】(1)分别作出点A、B、C沿y轴正方向平移3个单位得到对应点,顺次连接即可得; (2)分别作出点A、B、C以点O为旋转中心、顺时针方向旋转90度得到对应点,顺次连接即可得,再根据弧长公式计算即可. 【解答】解:(1)如图,△A1B1C1即为所求作三角形,点B1坐标为(﹣2,﹣1); (2)如图,△A2B2C2即为所求作三角形, ∵OC==, ∴==π. 【点评】本题考查了平移作图、旋转作图,解答本题的关键是熟练平移的性质和旋转的性质及弧长公式. 18.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少? 【考点】分式方程的应用. 【专题】应用题. 【分析】根据题意,设科普和文学书的价格分别为x和y元,则根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列方程组即可求解. 【解答】解:设科普和文学书的价格分别为x和y元, 则有:, 解得:x=7.5,y=5, 即这种科普和文学书的价格各是7.5元和5元. 【点评】本题考查分式方程的应用,同时考查学生理解题意的能力,关键是根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列出方程组. 19.已知关于x的方程=3的解是正数,求m的取值范围. 【考点】解分式方程;解一元一次不等式. 【专题】计算题. 【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围. 【解答】解:原方程整理得:2x+m=3x﹣6, 解得:x=m+6. 因为x>0,所以m+6>0,即m>﹣6.① 又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠﹣4.② 由①②可得,m的取值范围为m>﹣6且m≠﹣4. 【点评】本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m≠4,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视. 20.(12分)(2016?河南模拟)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系. 【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论. 【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD. 【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73) 【考点】四边形综合题. 【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可. 【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案; 【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD. 【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE, ∴AG=AE,∠DAG=∠BAE,DG=BE, 又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°, ∴∠GAF=∠FAE, 在△GAF和△FAE中, , ∴△AFG≌△AFE(SAS), ∴GF=EF, 又∵DG=BE, ∴GF=BE+DF, ∴BE+DF=EF; 【类比引申】∠BAD=2∠EAF. 理由如下:如图(2),延长CB至M,使BM=DF,连接AM, ∵∠ABC+∠D=180°,∠ABC+∠ABM=180°, ∴∠D=∠ABM, 在△ABM和△ADF中, , ∴△ABM≌△ADF(SAS), ∴AF=AM,∠DAF=∠BAM, ∵∠BAD=2∠EAF, ∴∠DAF+∠BAE=∠EAF, ∴∠EAB+∠BAM=∠EAM=∠EAF, 在△FAE和△MAE中, , ∴△FAE≌△MAE(SAS), ∴EF=EM=BE+BM=BE+DF, 即EF=BE+DF. 故答案是:∠BAD=2∠EAF. 【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H. ∵∠BAD=150°,∠DAE=90°, ∴∠BAE=60°. 又∵∠B=60°, ∴△ABE是等边三角形, ∴BE=AB=80米. 根据旋转的性质得到:∠ADG=∠B=60°, 又∵∠ADF=120°, ∴∠GDF=180°,即点G在CD的延长线上. 易得,△ADG≌△ABE, ∴AG=AE,∠DAG=∠BAE,DG=BE, 又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40 故∠HAF=45°, ∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15° 从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75° 又∵∠BAD=150°=2×75°=2∠EAF ∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米. 【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫. 八年级数学怎么快速提高 一、做好数学课前预习工作 很多学生在数学课前预习的习惯,这样会造成课上学的不太懂、课后翻书找不到的这样的情况。 以下是为您推荐的八年级下册期末数学试题(附答案),希望本篇文章对您学习有所帮助。 八年级下册期末数学试题(附答案) 一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内. 1.不等式的解集是() A BCD 2.如果把分式中的x和y都扩大2倍,那么分式的值() A扩大2倍B不变C缩小2倍D扩大4倍 3.若反比例函数图像经过点,则此函数图像也经过的点是() ABCD 4.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为() A8,3 B8,6 C4,3 D4,6 5.下列命题中的假命题是() A互余两角的和是90°B全等三角形的面积相等 C相等的角是对顶角D两直线平行,同旁内角互补 6.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面, 则钥匙藏在黑色瓷砖下面的概率是() ABCD 7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是() ABCD 8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC, AD=4,AB=5,BC=6,点P是AB上一个动点, 当PC+PD的和最小时,PB的长为() A1B2C2.5D3 二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上. 9、函数y=中,自变量的取值范围是. 10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距千米. 11.如图1,,,垂足为.若,则度. 12.如图2,是的边上一点,请你添加一个条件:,使. 13.写出命题“平行四边形的对角线互相平分”的逆命题:_______________ __________________________________________________________. 14.已知、、三条线段,其中,若线段是线段、的比例中项, 则=. 15.若不等式组的解集是,则. 16.如果分式方程无解,则m=. 17.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为. 18.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为. 三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤. 19.(8分)解不等式组,并把解集在数轴上表示出来. 20.(8分)解方程: 21.(8分)先化简,再求值:,其中. 22.(8分)如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,-1)、C(2,1). (1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′(,),C′(,); (2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(,). 23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF. 能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB=ED; ②BC=EF; ③∠ACB=∠DFE. 24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y). (1)用列表或画树状图的方法写出点Q的所有可能坐标; (2)求点Q落在直线y=上的`概率. 25.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1. (1)求反比例函数和一次函数的解析式; (2)若一次函数的图象与x轴相交于点C,求∠ACO的度数; (3)结合图象直接写出:当>>0时,x的取值范围. 26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=,CE=,CA=(点A、E、C在同一直线上). 已知小明的身高EF是,请你帮小明求出楼高AB. 27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据: A(单位:千克)B(单位:千克) 甲93 乙410 (1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围; (2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额. 28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n (1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似; (2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围; (3)以ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).旋转AFG,使得BD=CE,求出D点的坐标,并通过计算验证; (4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由. 八年级数学参考答案 一、选择题(本大题共8小题,每小题3分,共24分) 题号12345678 答案DBDACCAD 二、填空题(本大题共10小题,每题3分,共30分) 9、x≠110、2011、4012、或或 13、对角线互相平分的四边形是平行四边形。 以上就是八下数学题的全部内容,一、选择题(在下列各小题中只有一个正确答案,请将正确答案的字母代号填入答题纸的相应位置,每小题3分,共60分。)1.两个边数相同的多边形相似应具备的条件是( )A.对应角相等 B.对应边相等 C.对应角相等。七年级奥数题10道巨难
八年级下册数学小练