2013高考数学试卷?(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x )则取x=105,且x=105的概率等于需求量落入 的利润T的数学期望。那么,2013高考数学试卷?一起来了解一下吧。
这篇2013年广东高考理科数学试题的文章,是特地为大家整理的,希望对大家有所帮助!
本试卷共4页,21小题,满分150分.考试用时120分钟
注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。
参考公式:台体的体积公式V= (S1+S2+ )h,其中S1,S2分别表示台体的上、下底面积,h表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合M={x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N=
A. {0}B. {0,2}C. {-2,0}D{-2,0,2}
2.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是
A. 4B.3C. 2D.1
3.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是
A. (2,4)B.(2,-4)C. (4,-2)D(4,2)
4.已知离散型随机变量X的分布列为
X P
123
P
则X的数学期望E(X)=
A. B. 2C. D3
5.某四棱太的三视图如图1所示,则该四棱台的体积是
A.4 B. C. D.6
6.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是
A.若α⊥β,m α,n β,则m⊥ n B.若α∥β,m α,n β,则m∥n
C.若m⊥ n,m α,n β,则α⊥β D.若m α,m∥n,n∥β,则α⊥β
7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是
A. = 1 B. = 1 C. = 1 D. = 1
8.设整数n≥4,集合X={1,2,3……,n}。
2013江苏高考数学第14题详解如下:
第一步
第二步
2013江苏高考数学第14题原题:
斜率的含义:
1、斜率:
表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
2、曲线斜率:
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
启用前
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)
数学(理科)
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)
一、选择题:本大题共10小题。每小题5分,共50分。在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x-1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()
(A){0,1,2} (B){-1,0,1,2}
(C){-1,0,2,3}(D){0,1,2,3}
(2)设复数z满足(1-i)z=2 i,则z=()
(A)-1+i(B)-1-i(C)1+i(D)1-i
(3)等比数列{an}的前n项和为Sn,已知S3 = a2 +10a1 ,a5= 9,则a1=()
(A) (B) (C) (D)
(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
2013江苏高考数学第14题详解如下:
1、
2、
2013江苏高考数学第14题原题:
斜率的含义:
1、斜率:
表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
2、曲线斜率:
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
(21)(本小题满分12分)
已知圆 圆 动圆与圆外切并且与圆内切,圆心的轨迹为曲线 .
(I)求的方程;
(Ⅱ) 是与圆 ,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求 .
【解答第1问】
圆的圆心为 , 半径为 ;圆N的圆心为 , 半径为 .
记圆的半径为 ,则
∴
∴ 点的轨迹是以 为焦点的椭圆,且 .
∴ 曲线的方程为 .
【解答第2问】
如果以椭圆的左焦点为极点,极坐标方程为
当 ,值最大,且
所以,的最大值为 . 相应的点坐标为 .圆半径 .
圆与圆的公共切线共有条.
其中, 的方程为:
这条直线与曲线的交点为 , 相应的弦长为
若直线方程为 , 其与椭圆的公共点满足如下方程:
消元后得:
关于 轴对称,两条直线所对应的弦长相等。只要求出其中一条即可。
如上图所示,经过切点的半径与切线垂直。记切线的倾角为 , 则
的方程为:
代入以上公式可得:
【提炼与提高】
高考命题的原则是: 「基于教材,高于教材。」此题可以称得上是这方面的典型范例。
为了成功解答本题,需要闯过以下关卡:
第1关:根据已知条件求的方程。
解答的关键在于:应用几何分析,得出结论:动点到的距离之和为定值。
以上就是2013高考数学试卷的全部内容,注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。