当前位置: 首页 > 所有学科 > 数学

数学八下知识点

  • 数学
  • 2024-03-15

数学八下知识点?那么,数学八下知识点?一起来了解一下吧。

第十六章 分式
1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 ( )
3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则: 分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即 ;当n为正整数时, (
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法: ;
(2)幂的乘方: ;
(3)积的乘方: ;
(4)同底数的幂的除法: ( a≠0);
(5)商的乘方: ();(b≠0)
7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.
8.科学记数法:把一个数表示成 的形式(其中 ,n是整数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)
第十七章 反比例函数
1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k
2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点
3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
第十八章 勾股定理
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章 四边形
平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义 :邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。 2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。
正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。
梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是 (约为0.618)的矩形叫做黄金矩形。
第二十章 数据的分析
1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流
6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。
此内容来自百度文库,一些数学表达式,图像没能传上去,你可以到哪里去找!

书就是最好的复习资料 平行四边形 1.定义:有两组对边分别平行且相等的四边形叫平行四边形 2.平行四边形具有四边形所有性质 3平行四边形是特殊的四边形 4平行四边形是中心对称图形,两条对角线的交点是对称中心 判定 1两组对边分别相等的四边形是平行四边形 2.对角线互相平分的四边形是平行四边形 3.一组对边平行且相等的四边形是平行四边形 4两组对边分别相等的四边形是平行四边形 5.两组对边分别平行的四边形是平行四边形 6.有一个角是直角的平行四边形是矩形 矩形 1.矩形的四个角都是直角 2.矩形的对角线相等 3.矩形是轴对称图形,有两条对称轴 4.直角三角形斜边上的中线等于斜边的一半 5.有三个角是直角的四边形是矩形 6.对角线相等的平行四边形是矩形、、 . 菱形 1。有一组邻边相等的平行四边形叫菱形 2.是轴对称图形,有两条对称轴 3.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角 判定 1.一组邻边相等的平行四边形是菱形 2.对角线互相垂直的平行四边形是菱形、、 3.四条边相等的四边形是菱形 正方形 1.既有矩形的性质又有菱形的性质 2.证明方法 {1}先证矩形后证菱形 {2}先证菱形后证矩形 3.一边于一条对角线的夹角为45° 4.正方形被对角线平分成4个相等的等腰直角三角形梯形 1.一组对边平行,一组对边不平行的四边形是梯形 2.一组对边平行且不相等的四边形是梯形 3.等腰梯形同一底上的两个直角相等 4.等腰梯形的两条对角线相等 判定 1.同一底上两个角相等的梯形是等腰梯形 其他的自己看书吧 书上写的很明确

第1章 二次根式 二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。这些都说明了前后知识之间的内在联系。 本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。一、教科书内容和教学目标 本章的教学要求。(1)了解二次根式的概念,了解简单二次根式的字母取值范围;(2)了解二次根式的性质;(3)了解二次根式的加、减、乘、除的运算法则;(4)会用二次根式的性质和运算法则进行有关实数的简单四则运算(不要求分母有理化)。 本章教材分析。课本在回顾算术平方根的基础上,通过“合作学习”的三个问题引出二次根式的概念,并说明以前学的数的算术平方根也叫做二次根式。在例题和练习的安排上,着重体现三个方面的要求:一是求二次根式中字母的取值范围;二是求二次根式的值;三是用二次根式表示有关的问题。对于二次根式的性质,课本利用第4页图1-2给出的。该图的含义是如果正方形的面积为,那么这个正方形的边长就是;反之,如果正方形的边长为,那么这个正方形的面积就是,因此就有。从而得出二次根式的第一个性质。至于第二个性质,可以通过学生的计算来发现,所以课本安排了一个“合作学习”,让学生自己去发现和归纳。该节第一课时的重点在于对这两个性质的理解和运用,例题和练习的设计就围绕这两个性质展开。第二课时是学习二次根式的另外两个性质,课本安排两组练习,意在让学生通过自己的尝试,与同学的合作交流来发现这两个性质。通过两个例题和一组练习,使学生知道运用二次根式的性质,可以简化实数的运算,也可以对结果是二次根式的式子进行化简。课本第9页的“探究活动”既是对二次根式的运用,更在于培养学生的一种探究能力,观察、发现、归纳等能力。第1.3节二次根式的运算,包含了二次根式的加、减、乘、除四种运算以及简单应用,课本安排了3个课时,逐步推进,逐渐综合。第一课时侧重于两个(相当于两个单项式)二次根式的乘除,其法则是从二次根式的性质得到的,比较自然。例1是对两个运算法则的直接运用,让学生有一个对法则的熟悉和熟练过程;例2是一个结合实际问题的运用,其中有勾股定理和三角形的面积计算。第二课时是二次根式的加减和乘除混合运算,出现了类似单项式乘以多项式、多项式乘以多项式(包括乘法公式、乘方)、多项式除以单项式的运算。课本中没有出现“同类二次根式”的概念,只是提到“类似于合并同类项”“相同二次根式的项”,这种类比的方法,学生是能够理解的,也能够与整式一样进行运算。第三课时是二次根式运算的应用。例6的数字看上去比较复杂,其目的是为了二次根式的运算的应用;例7综合运用了直角三角形的有关知识、图形的分割、面积的计算等,其解答过程较长,也是对二次根式知识的综合运用。二、本章编写特点 注重学生的观察、分析、归纳、探究等能力的培养。在本章知识的呈现方式上,课本比较突出地体现了“问题情境——数学活动——概括——巩固、应用和拓展”的叙述模式,这种意图大多通过“合作学习” 来完成。“合作学习”为学生创设了从事观察、猜测、验证交流等数学活动的机会。如第5页先让学生计算三组与的具体数值,再议一议与的关系,然后得出二次根式的性质“=”。二次根式的其他几个性质,课本中也是采用类似的方法。在学习了二次根式的有关性质后,课本又设计了一个“探究活动”,通过化简有关的二次根式,让学生自己去发现规律、表示规律、验证规律,并与同伴交流。所有这些都是教材编写的一种导向,以引起教与学方式上的一些的改变。 注重数学知识与现实生活的联系。教材力求克服传统观念上学习二次根式的枯燥性,避免大量纯式子的化简或计算,适当穿插实际应用或赋予式子一些实际意义。无论是学习二次根式的概念,还是学习二次根式的性质和运算,都尽可能把所学的知识与现实生活相联系,重视运用所学知识解决实际问题能力的培养。如二次根式概念的学习,课本通过三个实际问题来引入,其目的就是关注概念的实际背景与形成过程,克服机械记忆概念的学习方式。又如,课本第3页,用二次根式表示轮船航行的的距离,第11页求路标的面积,第21页花草的种植面积问题等。特别是在二次根式的运算中,专门安排了一节内容学习二次根式运算的应用,例6选取的背景是学生熟悉的滑梯,例7选取的背景是学生感兴趣的剪纸条,以及作业中的堤坝、快艇问题等等。 充分利用图形,使代数与几何有机结合。 对于数与代数的内容,教材重视有关内容的几何背景,运用几何直观帮助学生理解、解决有关代数问题,是教材的一个编写特点,也是对教学的一种导向。本章中,如二次根式与直角三角形有关边的计算密切相关,课本在这方面选取了一定量的问题,既丰富了勾股定理的运用,又学习了二次根式的计算。又如二次根式的引入,课本以图形作为条件,让学生通过计算给出二次根式的概念;在学习二次根式的性质时,课本通过让学生读图1-2,从正反两方面来理解其含义,得出二次根式的性质。例题中结合图形示意,帮助学生理解问题,解决问题;作业或课本练习中设计一些图形中有关线段长度的计算;通过方格、直角坐标系来画三角形、确定点的位置等等。课本在安排二次根式的运算在日常生活和生产实际中的应用时,所选取的问题也在于体现学生所学知识之间的联系,感受所学知识的整体性,不断丰富学生解决问题的策略,提高解决问题的能力。三、教学建议 注意用好节前语。本章的节前语不多,但都紧密结合本节学习的内容,提出一个具体的问题。教学中可以利用它们来创设问题情境,引入课题。如第1.1节“排球网的高AD为2.43米,CB为米,你能用代数式表示AC的长吗?”短短的几句话,既是一个学生熟悉的问题情境,又是一个看似熟悉但又具有一定的挑战怀,与数学学习相联系的问题,教师可以由此提出一个与本节课学习有关的问题。教学中不应忽视这种作用。 注意把握教学难度。与以往的教材相比,二次根式已降低了要求。如运用二次根式的性质将二次根式化简,只要求简单的,不要出现过于复杂的式子,并且明确根号内不含字母敞海搬剿植济邦汐鲍搂。对二次根式的四则运算,也仅局限于简单的,根号内不含字母,教学中不需补充超出课本题目要求的问题。当然对不同层次的学生,应该体现一定的弹性。课本第15页的作业题中的第7,8题,还可以借助于计算器进行计算。 充分运用类比的方法。 二次根式的运算以整式的运算为基础,其法则、公式都与整式的类似,特别是二次根式的加减,课本没有提出同类二次根式的概念,完全参照合并同类项的方法;二次根式的乘除、乘方运算类似于整式的乘除、乘方运算。因此对于二次根式的四则运算的教学应充分运用类比的方法,让学生理解其算理和算法,提高运算能力。 第2章一元二次方程 一、教科书内容和课程学习目标 (一)教科书内容 本章包括三节: 2.1 一元二次方程; 2.2一元二次方程的解法; 2.3一元二次方程的应用。 其中2.1节是全章的基础部分,2.2节是全章的重点内容,2.3节是知识应用和引申的内容。另外,阅读材料介绍了一元二次方程的发展,让学生了解数学的发展史。 (二)本章的知识结构
(三)课程目标 (1)了解一元二次方程的概念,会用直接开平方法解形如(b≥0)的方程; (2)理解配方法,会用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程,使学生能够根据方程的特征,灵活运用一元二次方程的各种解法求方程的根。 (3)体验用观察法、画图或计算器等手段估计方程的解的过程。 (4)能够根据具体问题中的数量关系,能够列出一元二程方程解应用题,能够发现、提出日常生活、生产或其他学科中可利用一元二次方程来解决的实际问题,并正确地用语言表达问题及解决过程。体会方程是刻画现实世界的一个有效的数学模型。 (5)结合教学内容进一步培养学生逻辑思维能力,对学生进行辩证唯物主义观点的教育,通过一元二次方程的教学,使学生进一步获得对事物可以转化的认识。 (四)课时安排 2.1 一元二次方程…………………………………………………………2课时 其中:一元二次方程的概念……………………1课时
因式分解法解一元二次方程……………1课时 2.2一元二次方程的解法………………………

初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们山东省济南市的中考中是这样的)。
代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的
几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。
以上就是我对初中数学知识的总结,不过,这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有)

知识要点 1.分式的有关概念


设A、B表示两个整式.如果B中含有字母,式子 就叫做分式.注意分母B的值不能为零,否则分式没有意义


分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简


2、分式的基本性质


(M为不等于零的整式)


3.分式的运算 (分式的运算法则与分数的运算法则类似).


(异分母相加,先通分);



4.零指数


5.负整数指数


注意正整数幂的运算性质



可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.


6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.


7、列分式方程解应用题的一般步骤:


(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。



正比例、反比例、一次函数


第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);


x轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x轴上,y轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y轴上,


若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;


若两个点关于x轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。


1、 一次函数,正比例函数的定义


(1)如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数。


(2)当b=0时,一次函数y=kx+b即为y=kx(k≠0).这时,y叫做x的正比例函数。


注:正比例函数是特殊的一次函数,一次函数包含正比例函数。


2、正比例函数的图象与性质


(1)正比例函数y=kx(k≠0)的图象是过(0,0)(1,k)的一条直线。


(2)当k>0时 y随x的增大而增大 直线y=kx经过一、三象限 从左到右直线上升。


当k<0时 y随x的增大而减少 直线y=kx经过二、四象限 从左到右直线下降。



3、一次函数的图象与性质


(1) 一次函数y=kx+b(k≠0)的图象是过(0,b)(- ,0)的一条直线。


注:(0,b)是直线与y轴交点坐标,(-,0)是直线与x轴交点坐标.


(2)当k>0时 y随x的增大而增大 直线y=kx+b(k≠0)是上升的


当k<0时 y随x的增大而减少 直线y=kx+b(k≠0)是下降的


4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响


(1)k>0, b>0 直线经过一、二、三象限


(2)k>0, b<0 直线经过一、三、四象限


(3)k<0, b>0 直线经过一、二、四象限


(4)k<0, b<0 直线经过二、三、四象限


5、对一次函数y=kx+b的系数k, b 的理解。


(1)k(k≠0)相同,b不同时的所有直线平行,即直线;直线(均不为零,为常数)



(2)k(k≠0)不同,b相同时的所有直线恒过y轴上一定点(0,b),例如:直线y=2x+3, y=-2x+3, 均交于y轴一点(0,3)


6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k不变,直线沿y轴平移多少个单位,可由公式得到,其中b1,b2是两直线与y轴交点的纵坐标,直线沿x轴平移多少个单位,可由公式求得,其中x1,x2是由两直线与x轴交点的横坐标。


7、直线y=kx+b(k≠0)与方程、不等式的联系


(1)一条直线y=kx+b(k≠0)就是一个关于y的二元一次方程


(2)求两直线的交点,就是解关于x,y的方程组



(3)若y>0则kx+b>0。若y<0,则kx+b<0


(4)一元一次不等式,y1≤kx+b≤y2( y1,y2都是已知数,且y1

(5)一元一次不等式kx+b≤y0(或kx+b≥y0)( y0为已知数)的解集就是直线y=kx+b上满足y≤y0(或y≥y0)那条射线所对应的自变量的取范围。


8、确定正比例函数与一次函数的解析式应具备的条件


(1)由于比例函数y=kx(k≠0)中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。


(2) 一次函数y=kx+b中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点,或两对x,y的值。


9、反比例函数


(1) 反比例函数及其图象


如果,那么,y是x的反比例函数。


反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象


(2)反比例函数的性质


当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y随x的增大而减小;


当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。


(3)由于比例函数中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。



检举 回答人的补充   2009-08-21 14:04

三角形相似


相似三角形的判定方法:


(1)若DE∥BC(A型和X型)则△ADE∽△ABC


(2)射影定理 若CD为Rt△ABC斜边上的高(双直角图形)



解直角三角形




不知道是否是你所需要的...

以上就是数学八下知识点的全部内容,.。

猜你喜欢