数学建模算法与应用?《数学建模算法与应用》主要内容简介:作者司守奎、孙玺菁根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用》系统全面,各章节相对独立。《数学建模算法与应用》所选案例具有代表性,那么,数学建模算法与应用?一起来了解一下吧。
1.蒙特卡洛方法:
又称计算机随机性模拟方法,也称统计实验方法。可以通过模拟来检验自己模型的正确性。
2.数据拟合、参数估计、插值等数据处理
比赛中常遇到大量的数据需要处理,而处理的数据的关键就在于这些方法,通常使用matlab辅助,与图形结合时还可处理很多有关拟合的问题。
3.规划类问题算法:
包括线性规划、整数规划、多元规划、二次规划等;竞赛中又很多问题都和规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件,几个函数表达式作为目标函数的问题,这类问题,求解是关键。
这类问题一般用lingo软件就能求解。
4.图论问题:
主要是考察这类问题的算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人来说,应该都不难。
5.计算机算法设计中的问题:
算法设计包括:动态规划、回溯搜索、分治、分支定界法(求解整数解)等。
6.最优化理论的三大非经典算法:
a)模拟退火法(SA)
b) 神经网络(NN)
c)遗传算法(GA)
7.网格算法和穷举算法
8.连续问题离散化的方法
因为计算机只能处理离散化的问题,但是实际中数据大多是连续的,因此需要将连续问题离散化之后再用计算机求解。
无总结反省则无进步
写这篇文章,一是为了总结之前为了准备美赛而学的算法,而是将算法罗列并有几句话解释方便以后自己需要时来查找。
数学建模问题总共分为四类:
1. 分类问题 2. 优化问题 3. 评价问题 4. 预测问题
我所写的都是基于数学建模算法与应用这本书
一 优化问题
线性规划与非线性规划方法是最基本经典的:目标函数与约束函数的思想
现代优化算法:禁忌搜索;模拟退火;遗传算法;人工神经网络
模拟退火算法:
简介:材料统计力学的研究成果。统计力学表明材料中不同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(此过程称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形成处于低能状态的晶体。
思想可用于数学问题的解决 在寻找解的过程中,每一次以一种方法变换新解,再用退火过程的思想,以概率接受该状态(新解) 退火过程:概率转化,概率为自然底数的能量/KT次方
遗传算法: 遗传算法是一种基于自然选择原理和自然遗传机制的搜索算法。模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。
遗传算法的实质是通过群体搜索技术(?),根据适者生存的原则逐代进化,最终得到最优解或准最优解。
《数学建模算法与应用》是国防工业出版社2011年8月1日出版的图书,作者是司守奎、孙玺菁。《数学建模算法与应用》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏最小二乘面归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。
1、蒙特卡罗算法,该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题,通常使用Lindo、Lingo软件实现。
4、图论算法,这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法,网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法,很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
1. 蒙特卡罗算法。 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。 这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。 这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。 这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。 两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
以上就是数学建模算法与应用的全部内容,1、蒙特卡罗算法,该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性。2、数据拟合、参数估计、插值等数据处理算法,通常使用Matlab作为工具。3、线性规划、整数规划、。