目录小学三年级数学游戏大全 数学的来历30字 数学的来历简短 数学的由来50字左右 数学天才牛顿的故事
我国数学在世界数学发展史上,有它卓越的贡献。
早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。
在新石器时期的彩陶钵上,有多种刻画符号,其中丨、、、?、 等,很可能是我国最早的记数符号。
产生文字之后,在殷商的甲骨文中出现了滑则记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量。
《前汉书?律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。
在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。
春秋战国时期,学术繁荣,产生了相当精彩和可贵的数学思想;公元前6世纪,已经有了关于简单体积和比例分配问题的算法,在《考工记》中记载了分数和角度的资料;到秦始皇时,统一了度量衡,并且基本上采用了十进制的度量单位,在《墨经》中提出了几何名词的定义和几何命题等。
《杜忠算术》和《许商算术》是最早的数学专著,但这两部书都失传了。
至今仍保留的古代数学专著是《算数书》,全书共有60多个小标题、90多个题目,书中内容涉及了整数和分数的四则运算、比例问题、面积和体积问题等、并且含有“合分”、“少广”等数学思想。
大约公元前1世纪完成了《周髀算经》(书中大部分内容于公元前7到6世纪完成),书中记述了矩的用途、勾股定理及其在测量上的应用,相似直角三角形对应边成比例的定理、开平方问题、等差级数问题,应用古“四分历”计算相当复杂的分数运算等,此书为重要的宝贵文献。
古代数学的著名著作是《九章算术》,大约成书于公元1世纪东汉初年,全书列举了246个数学问题及解决问题的方法。
共有九章:第一章“方田”介绍土地面积的计算、含有正方形、矩形、三角形、梯形、圆、环等面积公式,弓形面积和球形表面积的近似公式,还有分数四则运算法则、约分、通分、求最大公约数等方法;第二章“粟米”介绍了各种粮食折算的比例问题,及解比例的方法,称为“今有术”;第三章“衰(Cuǐ)分”介绍了按等级分配物资或按一定标准摊派税收的比例分配问题、等差数列和等比数列问题等;第四章“少广”介绍了已知正方形面积或正方体体积,求边长或棱长的开平方或开立方的方法,已知球的体积求直径的问题等;第五章“商功”介绍了立体体积计算,包括长方体、棱柱、棱锥、棱台、圆柱、圆锥、圆台、楔形体等体积的计算公式;第六章“均输”介绍了计算按人口多少、物价高低、路程远近等条件,合理摊派税收、民工的正比、反比、复比例、等差级数等问题;第七章“盈不足”介绍了盈亏类问题的算法;第八章“方程”介绍了一次联立方程问题,引入了负数的概念,及正负数的加减法则;第九章“勾股”介绍了勾股定理的应用和简单的测量问题,其后,历史上著名数学家刘徽、祖冲之、李淳风、贾宪等,都曾经深入研究和注释过《九章算术》并且提出许多新的概念和新的方法。
在诸如勾股定理的证明、重差术、割圆术、圆周率近似值、球的体积公式、二次和三次方程的解法。
同余式和不定方程的解法等方面做出了重要的新贡献。
我国古代数学专著有《勾股圆方图注》、《九章算术注》、《孙子算经》、《五经算术》、《缀术》等。
特别应该指出的是,刘徽在《九章算术注孙让迹》中对《九章算术》的大部分数学方法作了严密的论证,对于一些数学概念提出了明确的解释,为中国数学发展奠定了坚实的理论基础。
祖冲之在《缀术》中得出了比刘徽所提出的值更精密的圆周率,成为举世公认的重大成就。
贾宪在《黄帝九章算法细草》中提出的“开方作法本源”图和增乘开方法,以及《孙子算经》中的“孙子问题”,《张邱建算经》中的“百鸡问题”、珠算盘和珠算术等等,均在世界数学发展史上有深远影响。
追问
太长了,而且我在其他的知道上看过。
追答则并我国数学在世界数学发展史上,有它卓越的贡献。
早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。
在新石器时期的彩陶钵上,有多种刻画符号,其中丨、、、?、 等,很可能是我国最早的记数符号。
产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量。
《前汉书?律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。
在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。
春秋战国时期,学术繁荣,产生了相当精彩和可贵的数学思想;公元前6世纪,已经有了关于简单体积和比例分配问题的算法,在《考工记》中记载了分数和角度的资料;到秦始皇时,统一了度量衡,并且基本上采用了十进制的度量单位,在《墨经》中提出了几何名词的定义和几何命题等。
《杜忠算术》和《许商算术》是最早的数学专著,但这两部书都失传了。
至今仍保留的古代数学专著是《算数书》,全书共有60多个小标题、90多个题目,书中内容涉及了整数和分数的四则运算、比例问题、面积和体积问题等、并且含有“合分”、“少广”等数学思想。
我国古代数学专著有《勾股圆方图注》、《九章算术注》、《孙子算经》、《五经算术》、《缀术》等。
特别应该指出的是,刘徽在《九章算术注》中对《九章算术》的大部分数学方法作了严密的论证,对于一些数学概念提出了明确的解释,为中国数学发展奠定了坚实的理论基础。
祖冲之在《缀术》中得出了比刘徽所提出的值更精密的圆周率,成为举世公认的重大成就。
贾宪在《黄帝九章算法细草》中提出的“开方作法本源”图和增乘开方法,以及《孙子算经》中的“孙子问题”,《张邱建算经》中的“百鸡问题”、珠算盘和珠算术等等,均在世界数学发展史上有深远影响。
数学”一词是来自希腊语,字面意思有学习、科学之意。它起源于人类早期的生产活动,其基本概念的精炼早在古埃及、美索不达米亚及古印度就已经出现。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。
向左转|向右转
扩展资料:
发展
一、商周数学
大约4000年前夏朝的建立,标志着中国进入了奴隶社会。随着社会的发展,商代出现了比较成熟的文字---甲骨文,西周则演变为金文,即刻在青铜器上的铭文。
二、秋战国时代的数学
春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对科学文化影响极大。数学园地更是生机盎然,朝气勃勃。
四、周髀算经
《周髀》是西汉初期的一部天文、数学著作。键羡没髀是量日影的标杆(亦称表),因书中记载了不派仔少周代的天文知识,故名《周髀》。唐初凤选定数学课稿纳本时,取名《周髀算经》。
“数学”一词是来自希腊语,字面意思有学习、科学之意。它起源于人类早期的生产活动,其基本概念的精炼早在古埃及、美索不达米亚及古印度就已经出现。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六碰消艺中称为“数”)。
扩展资料:
发展
一、商周数学
大约4000年前夏朝的建立,标志着中国进入了奴隶社会。随着社会的发展,商代出现了比较成熟的文字---甲骨文,西周则演变为金文,即刻在青铜器上的铭文。
二、秋战国时代的数学
春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对野首科学文化影响极大。数学园地更是生机盎然,朝气勃勃。
四、周髀算经
《周髀》是西汉初期的一部天文、数学著作。髀颂吵数是量日影的标杆(亦称表),因书中记载了不少周代的天文知识,故名《周髀》。唐初凤选定数学课本时,取名《周髀算经》。
参考资料:-数学
数学,起源于人类早期生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。其演进可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间带携有拆枯某样相同事物的认知是人类思想旅行洞的一大突破。 除了如何去数实际物质的数量,人类亦了解了如何去数抽象物质的数量,如年份。算术也自然而然地产生了。
数学来源于人类早期的生产活动。
远在1万5千年前人类就已经能相当逼真地描绘出人和动物的形象,这是萌发图形意识的最早证粗州据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。
在日常生活和生产实践中又逐渐产生了计数意识和计数,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数,进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
拓展资料:
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本。
数学是研究现实世界空间形式和数量关系的一门科学。分为初等数学和高等数学。它在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本。
数学有学习、学问、科学之意,以及另外还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义和与学习有关的,亦会被用来指数学的。在中国古代,数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。数学,作为人类思维的表达形式,反映了人岩高蔽们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它念睁们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。