当前位置: 首页 > 所有学科 > 数学

高一数学知识点归纳总结,高中三年所有数学公式

  • 数学
  • 2023-06-11
目录
  • 高一下册数学必修一知识归纳
  • 高一数学必修重点归纳
  • 高中高一数学知识点梳理
  • 高中三年所有数学公式
  • 高一数学重点内容

  • 高一下册数学必修一知识归纳

    学习任何一门知识点都要学会对该知识点进行总结,这样可以检查学生对知识的真正掌握程度以及方便学生日后的复习。下面给大家带来一些高一数学知识点,希望对大家有所帮助。目录 高一数学知识点汇总高一数学知识点高一数学知识点大全高一数学知识点汇总合集 高一数学知识点汇总函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个御判蠢函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、 描点法:B、 图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯通过上面的高一数学必修1知识点总结,同学们已经梳理了一遍高一数学必修1的知识点,也加深了对该知识的更深了解,相信同学们一定能学好这部分知识点,也希望同学们以后的学习中多做总结。

    高一数学知识点集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2)注意:讨论的时候不要遗忘了的情况。(3)第二部分函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。(2)复合函数单调性的判定:①首先将原函数分冲举解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数镇陪的定义域是内函数的值域。4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数;⑶是偶函数;⑷奇函数在原点有定义,则;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

    高一数学知识点大全1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_).(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项).注意:一个推导利用倒序相加法推导等差数列的前n项和公式:Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn=n(a1+an)/2两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

    高一数学知识点汇总合集两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。特殊地,a,b∈R时,a+bi=0a=0,b=0.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。复数相等特别提醒:一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。解复数相等问题的方法步骤:(1)把给的复数化成复数的标准形式;(2)根据复数相等的充要条件解之。高中数学知识点总结理科归纳5定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

    高一数学知识点汇总大全相关文章: ★高一数学知识点全面总结 ★高一数学集合知识点汇总 ★高一数学知识点总结归纳 ★高一数学知识点总结(考前必看) ★高一数学必修一知识点汇总 ★高一数学知识点总结(人教版) ★高一数学常考知识点总结 ★高一数学知识点总结 ★高一数学知识点总结期末必备var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();

    高一数学必修重点归纳

    在学习过程中知识的总结往往很重要,那么高一数学知识点归纳有哪些呢?下面是由我为大家整理的“高一数学知识点总结归纳”,仅供参考,欢迎大家阅读。

    高一数学知识点归纳总结

    第一章:集合与函数概念

    一、集合有关概念

    1.集合的含义

    2.集合的中元素的三个特性:

    (1)元素的确定性如:世界上的山;

    (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y};

    (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。

    3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋};

    (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5};

    (2)集合的表示方法:列举法与描述法。

    注意:常用数集及其记法:XKb1.Com。

    非负整数集(即自然数集)记作:N;

    正整数集:N*或N+;

    整数集:纳岩没Z;

    有理数集:Q;

    实数集:R;

    1)列举法:{a,b,c……};

    2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2};

    3)语言描述法:例:{不是直角三角形的三角形};

    4)Venn图:

    4、集合的分类:

    (1)有限集含有有限个元素的集合;

    (2)无限集含有无限个元素的集合;

    (3)空集不含任何元素的集合例:{x|x2=-5}。

    二、集合间的基本关系

    1.“包含”关系—子集

    注意:有两种可能。

    (1)A是B的一部分;

    (2)A与B是同一集合。

    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA;

    2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实。

    例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

    即:

    ①任何一个集合是它本身的子集。

    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

    ③如果AíB,BíC,那么AíC;

    ④如果AíB同时BíA那么A=B;

    3.不含任何元素的集合叫做空集,记为Φ;

    规定:空集是任何集合的子集,空集是任何非空集合的真子集。

    4.子集个数:

    有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

    三、集合的运算

    运算类型交集并集补集;

    定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB};

    由所有属于集合A或属枣搭于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB});

    第二章:基本初等函数

    一、指数函数

    (一)指数与指数幂的运算

    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*。

    当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

    当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次洞纳方根都是0,记作。

    注意:当是奇数时,当是偶数时。

    2.分数指数幂

    正数的分数指数幂的意义,规定:

    0的正分数指数幂等于0,0的负分数指数幂没有意义;

    指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

    3.实数指数幂的运算性质

    (二)指数函数及其性质

    1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

    注意:指数函数的底数的取值范围,底数不能是负数、零和1。

    2、指数函数的图象和性质。

    第三章:第三章函数的应用

    1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

    2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

    方程有实数根函数的图象与轴有交点函数有零点。

    3、函数零点的求法:

    求函数的零点:

    (1)(代数法)求方程的实数根;

    (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

    4、二次函数的零点:

    二次函数

    1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

    3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

    拓展阅读:如何学好高中数学

    读好课本,学会研究

    有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。可以把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,学生要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,同时更是一个研究过程。

    记好笔记,注重课堂

    首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。

    其次,要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

    最后,在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

    写好总结,把握规律

    一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。"不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。"自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

    高中高一数学知识点梳理

    高一数学知识点总结:

    1、函数的奇偶性

    (1)若f(x)是偶函数,那么f(x)=f(-x)。

    (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

    (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

    (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

    (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反唯肢含的单调性。

    2、复合函数的有关问题

    (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f的定义域由不等式a≤g(x)≤b解出即可;若指笑已知f的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

    (2)复合函数的单调性由“同增异减”判定。

    数学

    数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们饥橡对数学所做出的贡献。

    基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精练早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。

    以上内容参考:--数学

    高中三年所有数学公式

    高一数学知识点总结(合集15篇)

    总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不如静下心来好好写写总结吧。那么如何把总结写出新花样呢?下面是小编整理的高一数学知识点总结,仅供参考,欢迎大家阅读。

    高一数学知识点总结锋携1

    集合的有关概歼基耐念

    1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

    注意:1集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

    2集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

    3集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

    2)集合的表示方法:常用的有列举法、描述法和图文法

    3)集合的分类:有限集,无限集,空集。

    4)常用数集:N,Z,Q,R,N

    子集、交集、并集、补集、空集、等概念

    1)子集:若对x∈A都有x∈B,则AB(或AB);

    2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)

    3)交集:A∩B={x|x∈A且x∈B}

    4)并集:A∪B={x|x∈A或x∈B}

    5)补集:CUA={x|xA但x∈U}

    注意:A,若A≠?,则?A;

    若且,则A=B(等集)

    集合与元素

    掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

    子集的几个等价关系

    1A∩B=AAB;2A∪B=BAB;3ABCuACuB;

    4A∩CuB=空集CuAB;5CuA∪B=IAB。

    交、并集运算的性质

    1A∩A=A,A∩?=?,A∩B=B∩A;2A∪A=A,A∪?=A,A∪B=B∪A;

    3Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

    有限子集的个数:

    设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

    练习题:

    已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系()

    A)M=NPB)MN=PC)MNPD)NPM

    分析一:从判断元素的共性与区别入手。

    解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}

    对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

    高一数学知识点总结2

    圆的方程定义:

    圆的标准方程(x―a)2+(y―b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的氏春定位条件,半径是圆的定形条件。

    直线和圆的位置关系:

    1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

    1Δ>0,直线和圆相交、2Δ=0,直线和圆相切、3Δ

    方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

    1dR,直线和圆相离、

    2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

    3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

    切线的性质

    (1)圆心到切线的距离等于圆的半径;

    (2)过切点的半径垂直于切线;

    (3)经过圆心,与切线垂直的直线必经过切点;

    (4)经过切点,与切线垂直的直线必经过圆心;

    当一条直线满足

    (1)过圆心;

    (2)过切点;

    (3)垂直于切线三个性质中的两个时,第三个性质也满足。

    切线的判定定理

    经过半径的外端点并且垂直于这条半径的直线是圆的切线。

    切线长定理

    从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

    高一数学知识点总结3

    集合的运算

    运算类型交 集并 集补 集

    定义域 R定义域 R

    值域>0值域>0

    在R上单调递增在R上单调递减

    非奇非偶函数非奇非偶函数

    函数图象都过定点(0,1)函数图象都过定点(0,1)

    注意:利用函数的单调性,结合图象还可以看出:

    (1)在[a,b]上, 值域是 或 ;

    (2)若 ,则 ; 取遍所有正数当且仅当 ;

    (3)对于指数函数 ,总有 ;

    二、对数函数

    (一)对数

    1.对数的概念:

    一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( ― 底数, ― 真数, ― 对数式)

    说明:○1 注意底数的限制 ,且 ;

    ○2 ;

    ○3 注意对数的书写格式.

    两个重要对数:

    ○1 常用对数:以10为底的对数 ;

    ○2 自然对数:以无理数 为底的对数的对数 .

    指数式与对数式的互化

    幂值 真数

    = N = b

    底数

    指数 对数

    (二)对数的运算性质

    如果 ,且 , , ,那么:

    ○1 + ;

    ○2 - ;

    ○3 .

    注意:换底公式: ( ,且 ; ,且 ; ).

    利用换底公式推导下面的结论:(1) ;(2) .

    (3)、重要的公式 1、负数与零没有对数; 2、 , 3、对数恒等式

    (二)对数函数

    1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

    注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.

    ○2 对数函数对底数的限制: ,且 .

    2、对数函数的性质:

    a>10

    定义域x>0定义域x>0

    值域为R值域为R

    在R上递增在R上递减

    函数图象都过定点(1,0)函数图象都过定点(1,0)

    (三)幂函数

    1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

    2、幂函数性质归纳.

    (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

    (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

    (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

    第四章 函数的应用

    一、方程的根与函数的零点

    1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

    2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。

    即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

    3、函数零点的求法:

    ○1 (代数法)求方程 的实数根;

    ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

    4、二次函数的零点:

    二次函数 .

    (1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

    (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

    (3)△

    5.函数的模型

    高一数学重点内容

    高一数学内容有《集合》、《函数》、《三角函数》、《向量》。

    根据地区不同,有些地方是学习必修一和必修二,必滑颤修二的主要内容是《立体几何》,简单的《解析几何》。有些地方是学习必修一和必修四,必修四的主信肆败要内容是《三角函数》、《向量》。必修一是一定要学的,包括《集合》、《函数》。

    高一数学怎么学

    首先,在课堂教学中培养好的听课习惯是很重要的;其次,要提高数学能力,堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

    再次,要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高;最后,要沉淀下来,有价值的问题要及时抓住,遗留问题要雹顷有针对性地补,注重实效。

    猜你喜欢