数学圆锥曲线经典题目?2.圆锥曲线与向量结合问题。这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。3.定点、定值问题。那么,数学圆锥曲线经典题目?一起来了解一下吧。
高中数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料,包括:试顷携题试卷雀皮伏、课件、教材、、各大名师网握渗校合集。
1、证明:见下图,做直线L:x=-p/2;做MG//x轴,交L于G;做NH//x轴,交L于H;根据抛物线的配山雹定义:
|MF|+|NF|=|MG|+|NG|=|Mx-(-p/2)|+|Nx-(-p/2)|=|Mx+p/2|+|Nx+p/2|=Mx+Nx+p=2(4-p/2)+p=8=定值。证毕。
2、解培帆:设:x=my+b...(1),点M、和N的横作别分别为Mx和Nx; 因为点A的中点横坐标为4-2p/2=(8-p)/2=(Nx+Mx)/2(中点坐标公式);即有:Mx+Nx=8-2/2=7;因为,Nx>=Mx>=0, Mxmin=0; Mxmax=Nx=7/2;当Mx=Nx=7/2;对于x=my+b, y^2=4(my+b); y^2-4my-b=(y-2m)^2-4m^2-b=0; b+4m^2=0;b=-4m^2, y=2m; 代入(1); x=m(2m)+b=2m^2+b=-2m^2=b/2=7/2; 与b<0矛盾;m不存在;因此,令:x=b;y^2=4b,y=+/-2√b; x=b=7/2;
由(1)得:y=0时,x=-b,将x=my-b...(2);将Mx=7/2,代入抛物唯樱线方程:y^2=4x=4*(7/2)=14; y=√14(负值舍去); 由式(2),得:7/2=m√14-b; m=(7+2b)/2√14; x=(7+2b)y/2√14-b...(3);代入抛物线方程,得:y^2=4[(7+2b)y/2√14-b];y^2-[2(7+2b)/√14]y+4b=0; 此时,直线与抛物线相切。
1.设M(x,y)是曲线C'上任意拿链一点,它关于P(a,2a)的对称点为N(2a-x,4a-y),
N在洞脊曲线C:y=-x^2+x+2①上,
∴4a-y=-(2a-x)^2+(2a-x)+2,
即y=x^2+(1-4a)x+4a^2+2a-2,②
为C'的方程。
(②-①)/2,x^2-2ax+2a^2+a-2=0,③
∵C与C'相交于A、B两点,
∴△/4=a^2-(2a^2+a-2)=-(a^2+a-2)>0,
∴a^2+a-2<0,
∴-2 2.设A(x1,y1),B(x2,y2), 由③,x1+x2=2a, 由①,y1-y2=-x1^2+x1+2-(-x2^2+x2+2) =(x1-x2)[-(x1+x2)+1],