高中数学必修4电子书?数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。5.人教版高中数学向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,那么,高中数学必修4电子书?一起来了解一下吧。
人教版高中数学必修四主要内容是三角函数和向量,这两个项在高考数学中经常遇到,所以考生在学习的时候要认真学习,下面是我为大家整理的人教版高中数学必修四知识总结,仅供大家参考。
人教版高中数学必修四---三角函数
1.人教版高中数学正弦二倍角公式: sin2α = 2cosαsinα
推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2
2.人教版高中没卖数学余弦二倍角公式:余弦二倍角公式有三组表示形式,三组形式等价。
(1)Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]
(2)Cos2a=1-2Sina^2
(3)Cos2a=2Cosa^2-1
推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1 =1-2(sinA)^2
3.人教版高中数学正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]
推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]
降幂公式:cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2
变式: sin2α=sin2α+π4-cos2α+4π=2sin2a+4π-1=1-2cos2α+4π; cos2α=2sinα+4πcosα+4π
4.人教版高中数学半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2;tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
5.人教版高中数学两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
6.人教版高中数学万能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
7.人教版高中数学其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
8.人教版高中数学三角函数口诀
三角函数是函数,象限符号坐标注。
必修四
第一章 三角函数
§1 周期现象
§2 角的概念的推广
§3 弧度制
§4 正弦函数和余弦函数的定义与诱导公式
4.1任意角的正弦函数、余弦函数的定义
4.2单位圆与周期性
4.3单位圆与诱导公式
§5 正弦函数的性质与图像
5.1从单位圆看正弦函数的性质
5.2正弦函数的图像
5.3正弦函数的性质
§6 余弦函数的图像和性质
6.1余弦函数的图像
6.2余弦函数的性质
§7 正切函数
7.1正切函数的定义
7.2正切函数的图像和性质
7.3正切函数的诱导公式
§8 函数 的图像
§9 三角函数的简单应用
第二章 平面向量
§1 从位移、速度、力到辩简向量
1.1位移、速度和力
1.2向量的概念
§2 从位移的合成到向量的加法
2.1向量的加法
2.2向量的减法
§3 从速度的倍数到数乘向量
3.1数乘向量
3.2平面向量基本定理携绝裤
§4 平面向量的坐标
4.1平面向量的坐标表示
4.2平面向量线性运算的坐标表示
4.3向量平行的坐标表示
§5 从力做的功到向量的宏喊数量积
§6 平面向量数量积的坐标表示
§7 向量应用举例
7.1点到直线的距离公式
7.2向量的应用举例
第三章 三角恒等变形
§1 同角三角函数的基本关系
§2 两角和与差的三角函数
2.1两角差的余弦函数
2.2两角和与差的正弦、余弦函数
2.3两角和与差的正切函数
§3 二倍角的三角函数
高一数学必修4知识点总结 1
第一章 三角函数
正角:按逆时针方向旋转形成的角
1、任意角负角:按顺时针方向旋转形成的角
零角:不作任何旋转形成的角
2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.
第二象限角的集合为k36090k360180,k
第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k
终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k
第一象限角的集合为k360k36090,k
3、与角终边相同的角的集合为k360,k
4、长度等于半径长的弧所对的圆心角叫做1弧度.
5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是
l. r
180
6、弧度制与角度制的换算公式:2360,1,157.3. 180
7、若扇形的圆心角为
为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,
1
11
Slrr2.
22
8
、设是一个任意大汪悉衡小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin
0,
yxy
,cos,tanx0. rrx
9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,
第三象限正切为正,第四象限余弦为正.
10、三角函数线:sin,cos,tan.
2222
11、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin
;
2
sin
tancos
sin
sintancos,cos.
tan
12、函数的诱导公式:
1sin2ksin,cos2kcos,tan2ktank. 2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan.
口诀:函陆尘数名称不变,符号看象限.
5sin
cos,cossin.6sincos,cossin. 2222
口诀:正弦与余弦互换,符号看象限.
13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的
1
倍(纵坐标不变),得到函数ysinx的图象;再将
函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数
ysinx的图象.
②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的
1
倍(纵坐标不变困做),得到函数
ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移
个单位长度,得到函数
ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横
2
坐标不变),得到函数ysinx的图象. 14、函数ysinx0,0的性质: ①振幅:;②周期:
2
;③频率:f
1
;④相位:x;⑤初相:. 2
函数ysinx,当xx1时,取得最小值为ymin ;当xx2时,取得最大值为ymax,则
11
x2x1x1x2ymaxyminymaxymin
22,,2.
yASinx , A0 , 0 , T
2
15 周期问题
2
yACosx , A0 , 0 , T
yASinx, A0 , 0 , T
yACosx, A0 , 0 , T
yASinxb , A0 , 0 , b 0, T
2
2
yACosxb , A0 , 0 , b0 ,T
TyAcotx , A0 , 0 ,
yAtanx , A0 , 0 , T
yAcotx, A0 , 0 , T
yAtanx , A0 , 0 , T
3
第二章 平面向量
16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.
相等向量:长度相等且方向相同的向量.
17、向量加法运算:
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.
C
⑶三角形不等式:ababab.
⑷运算性质:①交换律:abba;
abcabc②结合律:;③a00aa.
a
b
abCC
4
⑸坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.
设、两点的坐标分别为x1,y1,x2,y2,则x1x2,y1y2.
19、向量数乘运算:
⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a. ①
aa;
②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0.
⑵运算律:①aa;②aaa;③abab.
⑶坐标运算:设ax,y,则ax,yx,y.
20、向量共线定理:向量aa0与b共线,当且仅当有唯一一个实数,使ba.
设ax1,y1,bx2,y2,其中b0,则当且仅当x1y2x2y10时,向量a、bb0共线.
21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有
且只有一对实数1、2,使a1e12e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点是线段12上的一点,1、2的坐标分别是x1,y1,x2,y2,当12时,
点的坐标是
x1x2y1y2
时,就为中点公式。
第一章
三角函数
1.1
任意角概念和弧度制
1.1.1
任意角
1.1.2
弧度制
1.2
任意角的三角函数
1.2.1
任意角的三角函数
1.2.2
同角三角函数的基本关系式
1.3
三角函数的诱导公式
1.4
三角函数的图象与性质
1.4.1
正弦函数、余弦函数的图象
1.4.2
正弦函数、余弦函数的性质
1.4.3
正切函数的图象与性质
1.5
函数
y=Asin(
ω
x+
ψ
)
1.6
三角函数模型的简单应用
章复习与测试
第二章
平面向量
2.1
平面向量的实际背景及斗友基本概念
2.1.1
向量的物理背景与概念
2.1.2
向量的几何表示
2.1.3
相等向量与共线向量
2.2
平面向量的线性运算
2.2.1
向量加法运算及其几何意义
2.2.2
向量减法运算及其几何意义
2.2.3
向量数乘运算及芦销芹其几何意义
2.3
平面向量的基本定理及坐标表示
2.3.1
平面向量基本定理
2.3.2
平面向量的正交分解及坐标表示
2.3.3
平面向量的坐标运算
2.3.4
平面向量共线的坐标表示
2.4
平面向量的数量积
2.4.1
平面向量数量积的物理背景及其含义
2.4.2
平面向量数量积的坐标表示、模、夹角
2.5
平面向量应用举例
2.4.1
平面几何中的向量方法
2.4.2
向量在物理中的应用举例
章复习与测试
第三章
三角恒等变换
3.1
两角和与差的正弦、余弦和正切公式
3.1.1
两角差的余弦公式
3.1.2
两角和与差的正弦、余弦、正切公式
3.1.3
二倍角的正弦、余弦、正切公式
3.2
简单的三角恒等变换
章复习与测试
模块复习与陪毕测试
三角恒等变换是《高中数学必修4》。
《高中数学必修4》是2007年人民教育出版社出版图书,新课标教材,必修系列中第4本,普通高中课程标准实验教科书数学必修4 A版。
数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。
三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。向量是近代数学中重要和基本的数学概念之一,它梁饥是沟通代数、几何与三角函数的一种,有着极其丰富的实际背景,在数学和物理中都有广泛的应用。三角恒等变换在数学中有一定的应用。
全球权威心理学家、物理学家、生物学家及教育学家联合研究表明,图解的学习方法是最简单、最实用、最科学、最高效的学习方法。《图解新教材》丛书历经三年研发与打造,以图解的方式方法,创造性解决了目前学生陈旧低效的学习方式和繁杂抽象的学习内容问题。
《图解新教材》丛书将带领广大学子运用最便捷的方法思考问题,站在更高的层面上分析问题,运用最恰当的方式解决问题。本丛书将会使您轻松成为学习高手本丛书将会使您真正成为学考专家本书立足于解决“如何学好、如何考好”两个学生最关心的问题,同步新课标教材,落实新课标学习与考试理念。
以上就是高中数学必修4电子书的全部内容,平面向量的坐标运算 2.3.4 平面向量共线的坐标表示 2.4 平面向量的数量积 2.4.1 平面向量数量积的物理背景及其含义 2.4.2 平面向量数量积的坐标表示、模、。