2017安庆二模数学答案?高考数学模拟试题及答案:数列 1.(2015·四川卷)设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列。(1)求数列{an}的通项公式;(2)记数列an(1的前n项和为Tn,那么,2017安庆二模数学答案?一起来了解一下吧。
一、选择题
1.(哈尔滨质检)设全集U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)},则下图中阴影部分表示的集合为()
A.{x|x≥1} B.{x|1≤x<2}
C.{x|0
答案:B命题立意:本题考查集合的概念、运算及韦恩图知识的综合应用,难度较小.
解题思路:分别化简两集合可得A={x|0
易错点拨:本题要注意集合B表示函数的定义域,阴影部分可视为集合A,B的交集在集合A下的补集,结合数轴解答,注意等号能否取到.
2.已知集合A={0,1},则满足条件AB={0,1,2,3}的集合B共有()
A.1个 B.2个 C.3个 D.4个
答案:D命题立意:本题考查集合间的运算、集合间的关系,难度较小.
解题思路:由题知B集合必须含有元素2,3,可以是{2,3},{0,2,3},{1,2,3},{0,1,2,3},共4个,故选D.
易错点拨:本题容易忽视集合本身{0,1,2,3}的情况,需要强化集合也是其本身的子集的意识.
3.设A,B是两个非空集合,定义运算A×B={x|xA∪B且xA∩B}.已知A={x|y=},B={y|y=2x,x>0},则A×B=()
A.[0,1](2,+∞) B.[0,1)[2,+∞)
C.[0,1] D.[0,2]
答案:A命题立意:本题属于创新型的集合问题,准确理解运算的新定义是解决问题的关键.对于此类新定义的集合问题,求解时要准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.
解题思路:由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).
4.已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=()
A.[2,3] B.(-∞,-1][3,+∞)
C.(2,3] D.(-∞,-1](3,+∞)
答案:C解题思路:因为P={x|-1≤x≤2},Q={x|1
5.已知集合M={1,2,3,4,5},N=,则M∩N=()
A.{4,5} B.{1,4,5}
C.{3,4,5} D.{1,3,4,5}
答案:C命题立意:本题考查不等式的解法与交集的意义,难度中等.
解题思路:由≤1得≥0,x<1或x≥3,即N={x|x<1或x≥3},M∩N={3,4,5},故选C.
6.对于数集A,B,定义A+B={x|x=a+b,aA,bB},A÷B=.若集合A={1,2},则集合(A+A)÷A中所有元素之和为()
A. B.
C. D.
答案:D命题立意:本题考查考生接受新知识的能力与集合间的运算,难度中等.
解题思路:依题意得A+A={2,3,4},(A+A)÷A={2,3,4}÷{1,2}=,因此集合(A+A)÷A中所有元素的和等于1++2+3+4=,故选D.
7.已知集合A=kZsin(kπ-θ)=
,B=kZcos(kπ+θ)=cos θ,θ,则(ZA)∩B=()
A.{k|k=2n,nZ} B.{k|k=2n-1,nZ}
C.{k|k=4n,nZ} D.{k|k=4n-1,nZ}
答案:A命题立意:本题考查诱导公式及集合的运算,根据诱导公式对k的奇偶性进行讨论是解答本题的关键,难度较小.
解题思路:由诱导公式得A={kZ|k=2n+1,nZ},B={kZ|k=2n,nZ},故(ZA)∩B={kZ|k=2n,nZ},故选A.
8.已知M={x||x-1|>x-1},N={x|y=},则M∩N等于()
A.{x|1
C.{x|1≤x≤2} D.{x|x<0}
答案:B解题思路:(解法一)直接法:可解得M={x|x<1},N={x|0≤x≤2},所以M∩N={x|0≤x<1},故选B.
(解法二)排除法:把x=0代入不等式,可以得到0M,0N,则0M∩N,所以排除A,C,D.故选B.
9.(郑州一次质量预测)已知集合A={2,3},B={x|mx-6=0},若BA,则实数m=()
A.3 B.2
C.2或3 D.0或2或3
答案:D命题立意:本题考查了集合的运算及子集的概念,体现了分类讨论思想的灵活应用.
解题思路:当m=0时,B=A;当m≠0时,由B={2,3},可得=2或=3,解得m=3或m=2.综上可得,实数m=0或2或3,故选D.
二、填空题
10.已知集合A={x||x-1|<2},B={x|log2 x<2},则A∩B=________.
答案:{x|0
解题思路:将两集合化简得A={x|-1
11.(四川南充质检)同时满足M⊆{1,2,3,4,5};a∈M,则(6-a)M的非空集合M有________个.
答案:7命题立意:本题考查集合中元素的特性,难度中等.
解题思路: 非空集合M{1,2,3,4,5},且若aM,则必有6-aM,那么满足上述条件的集合M有{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.
12.设集合A=,B={y|y=x2},则A∩B等于______.
答案:{x|0≤x≤2}解题思路: A=={x|-2≤x≤2},B={y|y=x2}={y|y≥0}, A∩B={x|0≤x≤2}.
13.设A是整数集的一个非空子集,对于kA,如果k-1A且k+1A,那么称k是集合A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有________个.
答案:6命题立意:本题主要考查集合的新定义,正确理解新定义,得出构成的不含“好元素”的集合均为3个元素紧邻的集合,是解决本题的关键.
解题思路:依题意可知,若由S的3个元素构成的集合不含“好元素”,则这3个元素一定是紧邻的3个数,故这样的集合共有6个.
14.已知集合A=,B={(x,y)|x2+(y-1)2≤m},若AB,则m的取值范围是________.
答案:[2,+∞)命题立意:本题主要考查线性规划知识,意在综合考查圆的方程、点和圆的位置关系以及数形结合思想.
解题思路:作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,,由AB得三角形所有点都在圆的内部,故≥,解得m≥2.
15.已知R是实数集,集合A={y|y=x2-2x+2,xR,-1≤x≤2},集合B=,任取xA,则xA∩B的概率等于________.
答案:命题立意:本题主要考查函数的图象与性质、不等式的解法、几何概型的意义等基础知识,意在考查考生的运算能力.
解题思路:依题意得,函数y=x2-2x+2=(x-1)2+1.当-1≤x≤2时,函数的值域是[1,5],即A=[1,5];由>1得>0,x4,即B=(-∞,3)(4,+∞),A∩B=[1,3)(4,5],因此所求的概率等于=.
16.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)M,存在(x2,y2)M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
M=; M={(x,y)|y=ex-2};
M={(x,y)|y=cos x}; M={(x,y)|y=ln x}.
其中是“垂直对点集”的序号是________.
答案:解题思路:对于,注意到x1x2+=0无实数解,因此不是“垂直对点集”;对于,注意到过原点任意作一条直线与曲线y=ex-2相交,过原点与该直线垂直的直线必与曲线y=ex-2相交,因此是“垂直对点集”;对于,与同理;对于,注意到对于点(1,0),不存在(x2,y2)M,使得1×x2+0×ln x2=0,因为x2=0与x2>0矛盾,因此不是“垂直对点集”.综上所述,故填.
B组
一、选择题
1.命题:x,yR,若xy=0,则x=0或y=0的逆否命题是()
A.x,yR,若x≠0或y≠0,则xy≠0
B.x,yR,若x≠0且y≠0,则xy≠0
C.x,yR,若x≠0或y≠0,则xy≠0
D.x,yR,若x≠0且y≠0,则xy≠0
答案:D命题立意:本题考查命题的四种形式,属于对基本概念层面的考查,难度较小.
解题思路:对于原命题:如果p,则q,将条件和结论既“换质”又“换位”得如果非q,则非p,这称为原命题的逆否命题.据此可得原命题的逆否命题为D选项.
易错点拨:本题有两处高频易错点,一是易错选B,忽视了“x,yR”是公共的前提条件;二是错选C,错因是没有将逻辑联结词“或”进行否定改为“且”.
2.已知命题p:“直线l平面α内的无数条直线”的充要条件是“lα”;命题q:若平面α平面β,直线aβ,则“aα”是“aβ”的充分不必要条件.则真命题是()
A.pq B.p绨q
C.绨p绨q D.绨pq
答案:D解题思路:由题意可知,p为假命题,q为真命题,因此绨pq为真命题,故选D.
3.已知命题p:若(x-1)(x-2)≠0,则x≠1且x≠2;命题q:存在实数x0,使2x0<0.下列选项中为真命题的是()
A.绨p B.q
C.绨pq D.绨qp
答案:D命题立意:本题考查复合命题的真假性判定规则,难度中等.
解题思路:依题意,命题p是真命题,命题q是假命题,因此绨p是假命题,绨qp是真命题,绨pq是假命题,故选D.
4.已知命题p1:函数y=x--x在R上为减函数;p2:函数y=x+-x在R上为增函数.在命题q1:p1p2,q2:p1p2,q3:(绨p1)p2和q4:p1(绨p2)中,真命题是()
A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4
答案:C命题立意:本题考查含有逻辑联结词的命题的真假,难度中等.
解题思路:先判断命题p1,p2的真假,再判断复合命题的真假.因为函数y=x-2x是R上的减函数,所以命题p1是真命题;因为x=1和x=-1时,都有y=+2=,所以函数y=x+2x不是R上的增函数,故p2是假命题,所以p1p2是真命题,p1p2是假命题,(绨p1)p2是假命题,p1(绨p2)是真命题,所以真命题是q1,q4,故选C.
5.下列有关命题的说法正确的是()
A.命题“若x=y,则sin x=sin y”的逆否命题为真命题
B.函数f(x)=tan x的定义域为{x|x≠kπ,kZ}
C.命题“x∈R,使得x2+5x+1>0”的否定是:“x∈R,均有x2+5x+1<0”
D.“a=2”是“直线y=-ax+2与y=x-1垂直”的必要不充分条件
答案:A命题立意:本题考查常用逻辑用语的有关知识,难度较小.
解题思路:A正确,因为原命题为真,故其等价命题逆否命题为真;B错误,定义域应为;C错误,否定是:x∈R,均有x2+x+1≥0;D错误,因为两直线垂直充要条件为(-a)×=-1a=±2,故“a=2”是“直线y=-ax+2与y=x-1垂直”的充分不必要条件,故选A.
6.在四边形ABCD中,“λ∈R,使得=λ,=λ”是“四边形ABCD为平行四边形”的()
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案:C命题立意:本题考查向量共线与充要条件的意义,难度中等.
解题思路:由λ∈R,使得=λ,=λ得ABCD,ADBC,四边形ABCD为平行四边形;反过来,由四边形ABCD为平行四边形得=1·,=1·.因此,在四边形ABCD中,“λ∈R,使得=λ,=λ”是“四边形ABCD为平行四边形”的充要条件,故选C.
7.下列说法错误的是()
A.命题“若x2-4x+3=0,则x=3”的逆否命题是“若x≠3,则x2-4x+3≠0”
B.“x>1”是“|x|>0”的充分不必要条件
C.若pq为假命题,则p,q均为假命题
D.命题p:“x∈R,使得x2+x+1<0”,则绨p:“x∈R,使得x2+x+1≥0”
答案:C命题立意:本题主要考查常用逻辑用语的相关知识,考查考生分析问题、解决问题的能力.
解题思路:根据逆命题的构成,选项A中的说法正确;x>1一定可得|x|>0,但反之不成立,故选项B中的说法正确;且命题只要p,q中一个为假即为假命题,故选C中的说法不正确;特称命题的否定是全称命题,选项D中的说法正确.
8.下列说法中不正确的个数是()
命题“x∈R,x3-x2+1≤0”的否定是“x0∈R,x-x+1>0”;
若“pq”为假命题,则p,q均为假命题;
“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件.
A.0 B.1 C.2 D.3
答案:B命题立意:本题主要考查简易逻辑知识,难度较小.
解题思路:对于,全称命题的否定是特称命题,故正确;对于,若pq为假,则p,q中至少有一个为假,不需要均为假,故不正确;对于,若a,b,c成等比数列,则b2=ac,当b<0时,b=-;若b=,有可能a=0,b=0,c=0,则a,b,c不成等比数列,故正确.综上,故选B.
知识拓展:在判定命题真假时,可以试图寻找反例,若能找到反例,则命题为假.
9.已知f(x)=3sin x-πx,命题p:x∈,f(x)<0,则()
A.p是真命题,绨p:x∈,f(x)>0
B.p是真命题,绨p:x0∈,f(x0)≥0
C.p是假命题,绨p:x∈,f(x)≥0
D.p是假命题,绨p:x0∈,f(x0)≥0
答案:B命题立意:本题主要考查函数的性质与命题的否定的意义等基础知识,意在考查考生的运算求解能力.
解题思路:依题意得,当x时,f′(x)=3cos x-π<3-π<0,函数f(x)是减函数,此时f(x)
10.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.既不充分也不必要的条件
答案:C解题思路:φ(a,b)=0,即=a+b,又a≥0,b≥0,所以a2+b2=(a+b)2,得ab=0;反之当ab=0时,必有φ(a,b)=-a-b=0,所以φ(a,b)=0是a与b互补的充要条件,故选C.
二、填空题
11.命题p:x∈R,使3cos2+sin cos
答案:(-,1]解题思路:3cos2+sin cos =+sin x=++sin x=+=+sin,故命题p正确的条件是+a>-,即a>-.
对于命题q,因为x>0,故不等式等价于a≤,因为x+≥2当且仅当x=,即x=1时取等号,所以不等式成立的条件是a≤1.
综上,命题pq为真,即p真q真时,a的取值范围是(-,1].
12.设等比数列{an}的前n项和为Sn,则“a1>0”是“S3>S2”的________条件.
答案:充要命题立意:本题考查了等比数列的公式应用及充要条件的判断,难度中等.
解题思路:若a1>0,则a3=a1q2>0,故有S3>S2.若S3>S2,则a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要条件.
13.已知c>0,且c≠1.设命题p:函数f(x)=logc x为减函数;命题q:当x时,函数g(x)=x+>恒成立.如果p或q为真命题,p且q为假命题,则实数c的取值范围为________.
答案:(1,+∞)命题立意:本题主要考查命题真假的判断,在解答本题的过程中,要考虑有p真q假或p假q真两种情况.
解题思路:由f(x)=logc x为减函数得0恒成立,得2>,解得c>.如果p真q假,则01,所以实数c的取值范围为.
14.给出下列四个结论:
命题“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;
函数f(x)=x-sin x(xR)有3个零点;
对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则xg′(x).
其中正确结论的序号是________.(请写出所有正确结论的序号)
答案:解题思路:显然正确;由y=x与y=sin x的图象可知,函数f(x)=x-sin x(xR)有1个零点,不正确;对于,由题设知f(x)为奇函数,g(x)为偶函数,又奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反, 当x0,g′(x)<0,
f′(x)>g′(x),正确.
15.(北京海淀测试)给出下列命题:
“α=β”是“tan α=tan β”的既不充分也不必要条件;
“p为真”是“p且q为真”的必要不充分条件;
“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;
“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充要条件.
其中真命题的序号是________.
答案:命题立意:本题考查充分条件、必要条件的判断,难度中等.
解题思路:对于,当α=β=时,不能推出tan α=tan β,反之也不成立,故成立;对于,易得“p为真”是“p且q为真”的必要不充分条件,故成立;对于,当数列{anan+1}是等比数列时不能得出数列{an}为等比数列,故成立;对于,“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充分不必要条件,故不成立.
2016-2017九年级数学上册期末数学试卷「附答案」
考生须知:
1.本试卷共4页,共五道大题,25个小题,满分120分;考试时间120分钟。
2.答题纸共6页,在规定位置认真填写学校名称、班级和姓名。
3.试题答案一律书写在答题纸上,在试卷上作答无效。
4.考试结束,请将答题纸交回,试卷和草稿纸可带走。
一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)
1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P
A. 在⊙O外 B. 在⊙O上 C. 在⊙O内 D. 不能确定
2. 已知△ABC中,∠C=90°,AC=6,BC=8, 则cosB的值是
A.0.6 B.0.75 C.0.8 D.
3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是
A . B .
C. D.
4. 下列图形中,既是中心对称图形又是轴对称图形的是
A. B. C. D.
5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是
A.外离 B.外切 C.内切 D.相交
6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是
A. a>0, b>0, c>0 B. a>0, b>0, c<0
C. a>0, b<0, c>0 D. a>0, b<0, c<0
7.下列命题中,正确的是
A.平面上三个点确定一个圆 B.等弧所对的圆周角相等
C.平分弦的直径垂直于这条弦 D.与某圆一条半径垂直的直线是该圆的切线
8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是
A.y=-(x+3)2-2 B.y=-(x+1)2-1
C.y=-x2+x-5 D.前三个答案都不正确
二、填空题(本题共16分, 每小题4分)
9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .
10.在反比例函数y= 中,当x>0时,y 随 x的增大而增大,则k 的取值范围是_________.
11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.
12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.
三、解答题(本题共30分, 每小题5分)
13. 计算:cos245°-2tan45°+tan30°- sin60°.
14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.
15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)
16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.
求证:△ABC的面积S△ABC= bcsinA.
17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD于点G,延长AG交BC于点F. 求证:AB2=BF•BC.
18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).
(1)求 a 的值;
(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;
(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)
四、解答题(本题共20分, 每小题5分)
19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.
(1)画出与四边形ABCD关于直线CD对称的图形;
(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;
(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.
20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.
(1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;
(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)
21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).
(1)求函数y2的解析式;
(2)在同一直角坐标系中,画出函数y1和y2的图象草图;
(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y1
22. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.
(1)求⊙O1、⊙O2的半径r1、r2的长;
(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?
五、解答题(本题共22分, 第23、24题各7分,第25题8分)
23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.
(1)判断直线BP与⊙O的位置关系,并证明你的结论;
(2)若⊙O的.半径为1,tan∠CBP=0.5,求BC和BP的长.
24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.
(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;
(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?
(3)点M能是AB边上任意一点吗?请求出AM的取值范围.
25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).
(1)求这个二次函数的解析式;
(2)求△ABC的外接圆半径r;
(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.
参考答案
一、 ACCBDABB
二、 9. :1 10. k< -1 11. ,12.
三、13. 原式= -2+ - ×
= -2 + - ……………………………………4分
= -3+ ……………………………………………………5分
14. 作AE⊥BC于E,交MQ于F.
由题意, BC×AE=9cm2 , BC=6cm.
∴AE=3cm. ……………………………1分
设MQ= xcm,
∵MQ∥BC,∴△AMQ∽△ABC. ……………………2分
∴ . ……………………3分
又∵EF=MN=MQ,∴AF=3-x.
∴ . ……………………………………4分
解得 x=2.
答:正方形的边长是2cm. …………………………5分
15. 由题意,在Rt△ABC中,AC= AB=6(米), …………………1分
又∵在Rt△ACD中,∠D=25°, =tan∠D, ……………………………3分
∴CD= ≈ ≈12.8(米).
答:调整后的楼梯所占地面CD长约为12.8米. ……………………5分
16. 证明:作CD⊥AB于D,则S△ABC= AB×CD. ………………2分
∵ 不论点D落在射线AB的什么位置,
在Rt△ACD中,都有CD=ACsinA. …………………4分
又∵AC=b,AB=c,
∴ S△ABC= AB×ACsinA
= bcsinA. …………5分
17. 证明:延长AF,交⊙O于H.
∵直径BD⊥AH,∴AB⌒ = BH⌒ . ……………………2分
∴∠C=∠BAF. ………………………3分
在△ABF和△CBA中,
∵∠BAF =∠C,∠ABF=∠CBA,
∴△ABF∽△CBA. …………………………………………4分
∴ ,即AB2=BF×BC. …………………………………………5分
证明2:连结AD,
∵BD是直径,∴∠BAG+∠DAG=90°. ……………………1分
∵AG⊥BD,∴∠DAG+∠D=90°.
∴∠BAF =∠BAG =∠D. ……………………2分
又∵∠C =∠D,
∴∠BAF=∠C. ………………………3分
18. ⑴把点(-3,1)代入,
得 9a+3+ =1,
∴a= - .
⑵ 相交 ……………………………………………2分
由 - x2-x+ =0, ……………………………3分
得 x= - 1± .
∴ 交点坐标是(- 1± ,0). ……………………………4分
⑶ 酌情给分 ……………………………………………5分
19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.
20. ⑴ 0.4 ……………………………………………2分
⑵ 0.6 ……………………………………………4分
列表(或画树状图)正确 ……………………………………5分
21. ⑴把点A( ,- 1)代入y1= - ,得 –1= - ,
∴ a=3. ……………………………………………1分
设y2= ,把点A( ,- 1)代入,得 k=– ,
∴ y2=– . ……………………………………2分
⑵画图; ……………………………………3分
⑶由图象知:当x<0, 或x> 时,y1
22. ⑴如图,矩形ABCD中,AB= 2r1=2dm,即r1=1dm. ………………………………1分
BC=3dm,⊙O2应与⊙O1及BC、CD都相切.
连结O1 O2,过O1作直线O1E∥AB,过O2作直线O2E∥BC,则O1E⊥O2E.
在Rt△O1 O2E中,O1 O2=r1+ r2,O1E= r1– r2,O2E=BC–(r1+ r2).
由 O1 O22= O1E2+ O2E2,
即(1+ r2)2 = (1– r2)2+(2– r2)2.
解得,r2= 4±2 . 又∵r2<2,
∴r1=1dm, r2=(4–2 )dm. ………………3分
⑵不能. …………………………………………4分
∵r2=(4–2 )> 4–2×1.75= (dm),
即r2> dm.,又∵CD=2dm,
∴CD<4 r2,故不能再裁出所要求的圆铁片. …………………………………5分
23. ⑴相切. …………………………………………1分
证明:连结AN,
∵AB是直径,
∴∠ANB=90°.
∵AB=AC,
∴∠BAN= ∠A=∠CBP.
又∵∠BAN+∠ABN=180°-∠ANB= 90°,
∴∠CBP+∠ABN=90°,即AB⊥BP.
∵AB是⊙O的直径,
∴直线BP与⊙O相切. …………………………………………3分
⑵∵在Rt△ABN中,AB=2,tan∠BAN= tan∠CBP=0.5,
可求得,BN= ,∴BC= . …………………………………………4分
作CD⊥BP于D,则CD∥AB, .
在Rt△BCD中,易求得CD= ,BD= . …………………………………5分
代入上式,得 = .
∴CP= . …………………………………………6分
∴DP= .
∴BP=BD+DP= + = . …………………………………………7分
24. ⑴依题意,点B和E关于MN对称,则ME=MB=4-AM.
再由AM2+AE2=ME2=(4-AM)2,得AM=2- . ……………………1分
作MF⊥DN于F,则MF=AB,且∠BMF=90°.
∵MN⊥BE,∴∠ABE= 90°-∠BMN.
又∵∠FMN =∠BMF -∠BMN=90°-∠BMN,
∴∠FMN=∠ABE.
∴Rt△FMN≌Rt△ABE.
∴FN=AE=x,DN=DF+FN=AM+x=2- +x. ………………………2分
∴S= (AM+DN)×AD
=(2- + )×4
= - +2x+8. ……………………………3分
其中,0≤x<4. ………………………………4分
⑵∵S= - +2x+8= - (x-2)2+10,
∴当x=2时,S最大=10; …………………………………………5分
此时,AM=2- ×22=1.5 ………………………………………6分
答:当AM=1.5时,四边形AMND的面积最大,为10.
⑶不能,0
25. ⑴∵△AOB∽△BOC(相似比不为1),
∴ . 又∵OA=4, OB=3,
∴OC=32× = . ∴点C( , 0). …………………1分
设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,
则c= -3,且 …………………2分
即
解得,a= , b= .
∴这个函数的解析式是y = x2+ x-3. …………………3分
⑵∵△AOB∽△BOC(相似比不为1),
∴∠BAO=∠CBO.
又∵∠ABO+ ∠BAO =90°,
∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分
∴AC是△ABC外接圆的直径.
∴ r = AC= ×[ -(-4)]= . ………………5分
⑶∵点N在以BM为直径的圆上,
∴ ∠MNB=90°. ……………………6分
①. 当AN=ON时,点N在OA的中垂线上,
∴点N1是AB的中点,M1是AC的中点.
∴AM1= r = ,点M1(- , 0),即m1= - . ………………7分
②. 当AN=OA时,Rt△AM2N2≌Rt△ABO,
∴AM2=AB=5,点M2(1, 0),即m2=1.
③. 当ON=OA时,点N显然不能在线段AB上.
综上,符合题意的点M(m,0)存在,有两解:
m= - ,或1. ……………………8分
;高考数学模拟试题及答案:数列
1.(2015·四川卷)设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列。
(1)求数列{an}的通项公式;
(2)记数列an(1的前n项和为Tn,求使得|Tn-1|<1 000(1成立的n的最小值。
解(1)由已知Sn=2an-a1,有an=Sn-Sn-1=2an-2an-1(n≥2),即an=2an-1(n≥2)。
从而a2=2a1,a3=2a2=4a1。
又因为a1,a2+1,a3成等差数列,
即a1+a3=2(a2+1)。
所以a1+4a1=2(2a1+1),解得a1=2。
所以,数列{an}是首项为2,公比为2的等比数列。
故an=2n。
(2)由(1)得an(1=2n(1。
所以Tn=2(1+22(1+…+2n(1=2(1=1-2n(1。
由|Tn-1|<1 000(1,得-1(1<1 000(1,
即2n>1 000。
因为29=512<1 000<1 024=210,所以n≥10。
于是,使|Tn-1|<1 000(1成立的n的最小值为10。
2.(2015·山东卷)设数列{an}的前n项和为Sn。
一、选择题(本大题共8小题,每小题5分,共40分)
1、不在 < 6 表示的平面区域内的一个点是
A.(0,0) B. (1,1) C.(0,2) D. (2,0)
2、已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为
A. B.2 C.2 D.4
3、设命题甲: 的解集是实数集 ;命题乙: ,则命题甲是命题乙成立的
A . 充分不必要条件 B. 充要条件
C. 必要不充分条件 D. 既非充分又非必要条件
4、与圆 及圆 都外切的动圆的圆心在
A. 一个圆上 B. 一个椭圆上
C. 双曲线的一支上 D. 一条抛物线上
5、已知 为等比数列, 是它的前 项和。若 ,且 与2 的等差中项为 ,
则 等于
A. 31 B. 32 C. 33 D. 34
6、如图,在平行六面体 中,底面是边长为2的正
方形,若 ,且 ,则 的长为
A. B. C. D.
7、设抛物线 的焦点为F,准线为 ,P为抛物线上一点,PA⊥ ,A为垂足.如果直线AF的斜率为 ,那么|PF|等于
A. B. 8 C. D. 4
8、已知 、 是椭圆 的两个焦点,若椭圆上存在点P使 ,则
A. B. C. D.
二、填空题(本大题共6小题,每小题5分,共30分)
9 、命题“若 ,则 且 ”的逆否命题是 .
10、若方程 表示椭圆,则实数 的取值范围是____________________.
11、某学习小组进行课外研究性学习,为了测量不能
到达的A、B两地,他们测得C 、D两地的直线
距离为 ,并用仪器测得相关角度大小如图所
示,则A、B两地的距离大约等于
(提供数据: ,结果保留两个有效数字)
12、设等差数列 的前 项和为 ,若 则 .
13、已知点P 及抛物线 ,Q是抛物线上的动点,则 的最小值为 .
14、关于双曲线 ,有以下说法:①实轴长为6;②双曲线的离心率是 ;
③焦点坐标为 ;④渐近线方程是 ,⑤焦点到渐近线的距离等于3.
正确的说法是 .(把所有正确的说法序号都填上)三、解答题(本大题共6小题,共80分,解答要写出证明过程或解题步骤)
15、(本小题满分12分)
已知 且 ,命题P:函数 在区间 上为减函数;
命题Q:曲线 与 轴相交于不同的两点.若“ ”为真,
“ ”为假,求实数 的取值范围.
16、(本小题满分12分)
在 中, 分别是角 的对边, 且
(1)求 的面积;(2)若 ,求角 .
17、(本小题满分l4分)
广东省某家电企业根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产空调机、彩电、冰箱共120台,且冰箱 至少生产20台,已知生产这些家电产品每台所需工时和每台产值如下表:
家电名称 空调机 彩电 冰箱
工时
产值/千元 4 3 2
问每周应生产 空调机、彩电、冰箱各多少台,才能使产值?产值是多少?(以千元为单位)
18、(本小题满分14分)
如右下图,在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2 . E、F分别是线段
AB 、BC上的点,且EB= FB=1.
(1) 求二面角C—DE—C1的余弦值;
(2) 求直线EC1与FD1所成的余弦值.
19、(本小题满分14分)
已知数列 满足
(1)求数列 的通项公式;
(2)证明:
20、(本小题满分14分)
已知椭圆C的中心在原点,焦点在 轴上,焦距为 ,且过点M 。
由图可知此电路为并联电路电流表在干路中,已知U=6V,R1=5Ω,R2=10Ω,
根据欧姆定律I1=
=U R1
=1.2A,I2=6V 5Ω
=U R2
=0.6A,I=I1+I2=1.2A+0.6A=1.8A.6V 10Ω
故答案为:1.8.
以上就是2017安庆二模数学答案的全部内容,2)ac=(2sinA-1,cosA),bc=(2sinA,cosA-1),因为|ac|=|bc|,两边平方后的4sin^2A+1-4sinA+cos^2A=4sin^2A+cos^a+1-2cosA,整理的tanA=1/2,又因为A在第三象限,所以sinA=-1/根5,cosA=-2/根5。