当前位置: 首页 > 所有学科 > 数学

数学建模算法

  • 数学
  • 2024-04-07

数学建模算法?那么,数学建模算法?一起来了解一下吧。

一、机理分析法 从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方 法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法 从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2… n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法
1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验
① 离散系统仿真--有一组状态变量。
② 连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

从问题的解决方法上分析,涉及到的数学建模方法:
几何理论、概率、统计(回归)分析、优化方法(规划)、图论与网络优化、层次分析、插值与拟合、差分方法、微分方程、排队论、模糊数学、随机决策、多目标决策、随机模拟、灰色系统理论、神经网络、时间序列、综合评价等方法。

按照应用领域:生物数学模型,医学数学模型,数量经济学模型,地理地质模型,人文数学模型,人口模型,交通模型,城市规划模型,水资源模型,污染模型,生态模型,环境模型,资源利用模型等。
按照建模数学方法:初等模型,几何模型,微分方程模型,图论模型,规划模型,概率统计模型,马氏链模型,排队论模型,规划模型等。
按照建模的目的:描述,分析,预测,决策,控制,优化,规划模型等。
按照对研究对象了解程度:白箱模型,灰箱模型,黑箱模型。

1.蒙特卡洛方法:
又称计算机随机性模拟方法,也称统计实验方法。可以通过模拟来检验自己模型的正确性。
2.数据拟合、参数估计、插值等数据处理
比赛中常遇到大量的数据需要处理,而处理的数据的关键就在于这些方法,通常使用matlab辅助,与图形结合时还可处理很多有关拟合的问题。
3.规划类问题算法:
包括线性规划、整数规划、多元规划、二次规划等;竞赛中又很多问题都和规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件,几个函数表达式作为目标函数的问题,这类问题,求解是关键。
这类问题一般用lingo软件就能求解。
4.图论问题:
主要是考察这类问题的算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人来说,应该都不难。
5.计算机算法设计中的问题:
算法设计包括:动态规划、回溯搜索、分治、分支定界法(求解整数解)等。
6.最优化理论的三大非经典算法:
a)模拟退火法(SA)
b) 神经网络(NN)
c)遗传算法(GA)
7.网格算法和穷举算法
8.连续问题离散化的方法
因为计算机只能处理离散化的问题,但是实际中数据大多是连续的,因此需要将连续问题离散化之后再用计算机求解。
如:差分代替微分、求和代替积分等思想都是把连续问题离散化的常用方法。
9.数值分析方法
主要研究各种求解数学问题的数值计算方法,特别是适用于计算机实现的方法与算法。
包括:函数的数值逼近、数值微分与数值积分、非线性返程的数值解法、数值代数、常微分方程数值解等。
主要应用matlab进行求解。
10. 图像处理算法
这部分主要是使用matlab进行图像处理。
包括展示图片,进行问题解决说明等。

从问题的解决方法上分析,涉及到的数学建模方法:
几何理论、概率、统计(回归)分析、优化方法(规划)、图论与网络优化、层次分析、插值与拟合、差分方法、微分方程、排队论、模糊数学、随机决策、多目标决策、随机模拟、灰色系统理论、神经网络、时间序列、综合评价等方法。

以上就是数学建模算法的全部内容, 的下。

猜你喜欢