当前位置: 首页 > 所有学科 > 数学

数学题目初中,初二数学题型归纳全套

  • 数学
  • 2024-07-27

数学题目初中?10、立体几何中的点、线、面:这类题目主要涉及立体几何中点、线、面的性质、判定等。11、立体几何中的体积问题:这类题目主要涉及长方体、立方体、圆柱、圆锥等简单几何体的体积计算。12、立体几何中的空间想象能力:这类题目主要涉及通过观察图形来解决问题,培养空间想象能力。13、那么,数学题目初中?一起来了解一下吧。

初中数学教资真题及答案

如图,题目标识为20度的角顶点定义为D,该顶点的弦另一端定义为C

因为:AB弧被三等分,而且AB是直径,

所以:对应这三段弧度的角都相等=60度,所以角CDO=60度

所以:所求角x和角CDE对应的圆弧是一致的,因此这两个角应该是一样的

所以:角x=角CDE=角CDO+角ODE=60+20=80度

故x=80度。

初中几何难题竞赛题

答案一:如果x=∠CBD(蓝色),答案是x=80°,

解:因为AB是直径,且弧AC=弧CE=弧EB

所以∠COE(红色)=60°

又因为OC=OE

所以△OCE是等边三角形,∠OEC(红色)=60°

所以∠CED(蓝色)=∠OEC+∠OED=80°

又因为∠CED(蓝色)和∠CBD(蓝色)都是弧CD对应的圆周角

所以∠CBD=∠CED=80°

答案二当x=∠ABD时x=50度

解:前面内容和上面一样证明∠CBD=80°,

又因为AB是直径,且弧AC=弧CE=弧EB

所以∠AOC=60°

所以∠ABC=30°(因为∠AOC和∠ABC分别是弧AC对应的圆心角和圆周角)

所∠ADB=∠CBD-∠ABC=80°-30°=50°

初一数学因式分解

初一100道数学计算题及答案

1.25×(8+10)

=1.25×8+1.25×10

=10+12.5=22.5

9123-(123+8.8)

=9123-123-8.8

=9000-8.8

=8991.2

1.24×8.3+8.3×1.76

=8.3×(1.24+1.76)

=8.3×3=24.9

9999×1001

=9999×(1000+1)

=9999×1000+9999×1

=10008999

14.8×6.3-6.3×6.5+8.3×3.7

=(14.8-6.5)×6.3+8.3×3.7

=8.3×6.3+8.3×3.7

8.3×(6.3+3.7)

=8.3×10

=83

1.24+0.78+8.76

=(1.24+8.76)+0.78

=10+0.78

=10.78

933-157-43

=933-(157+43)

=933-200

=733

4821-998

=4821-1000+2

=3823

I32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

=100000

9048÷268

=(2600+2600+2600+1248)÷26

=2600÷26+2600÷26+2600÷26+1248÷269

=100+100+100+48

=348

2881÷ 43

=(1290+1591)÷ 434

=1290÷43+1591÷43

=30+37

3.2×42.3×3.75-12.5×0.423×16

=3.2×42.3×3.75-1.25×42.3×1.6

=42.3×(3.2×3.75-1.25×1.6)

=42.3×(4×0.8×3.75-1.25×4×0.4)

=42.3×(4×0.4×2×3.75-1.25×4×0.4)

=42.3×(4x0.4x7.5-1.25x4x0.4)

=42.3×[4×0.4×(7.5-1.25)]

=42.3×[4×0.4×6.25]

=42.3×(4×2.5)

=4237

1.8+18÷1.5-0.5×0.3

=1.8+12-0.15

=13.8-0.15

=13.65

6.5×8+3.5×8-47

=52+28-47

=80-47

(80-9.8)×5分之2-1.32

=70.2X2/5-1.32

=28.08-1.32

=26.76

8×7分之4÷[1÷(3.2-2.95)]

=8×4/7÷[1÷0.25]

=8×4/7÷4

=8/7

2700×(506-499)÷900

=2700×7÷900

=18900÷900

=21

33.02-(148.4-90.85)÷2.5

=33.02-57.55÷2.5

=33.02-23.02

=10

(1÷1-1)÷5.1

=(1-1)÷5.1

=0÷5.1

=0

18.1+(3-0.299÷0.23)×1

=18.1+1.7×1

=18.1+1.7

=19.8

[-18]+29+[-52]+60= 19

[-3]+[-2]+[-1]+0+1+2= -3

[-301]+125+301+[-75]= 50

[-1]+[-1/2]+3/4+[-1/4]= -1

[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25

[-26.54]+[-6.14]+18.54+6.14= -8

1.125+[-17/5]+[-1/8]+[-0.6]= -3

[-98+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)

5+21*8/2-6-59

68/21-8-11*8+61

-2/9-7/9-56

4.6-(-3/4+1.6-4-3/4)

1/2+3+5/6-7/12

[2/3-4-1/4*(-0.4)]/1/3+2

22+(-4)+(-2)+4*3

-2*8-8*1/2+8/1/8

(2/3+1/2)/(-1/12)*(-12)

(-28)/(-6+4)+(-1)

2/(-2)+0/7-(-8)*(-2)

(1/4-5/6+1/3+2/3)/1/2

18-6/(-3)*(-2)

(5+3/8*8/30/(-2)-3

(-84)/2*(-3)/(-6)

1/2*(-4/15)/2/3

-3x+2y-5x-7y

1437×27+27×563 〔75-(12+18)〕÷15

2160÷〔(83-79)×18〕 280+840÷24×5

325÷13×(266-250) 85×(95-1440÷24)

58870÷(105+20×2) 1437×27+27×563

81432÷(13×52+78) [37.85-(7.85+6.4)] ×30

156×[(17.7-7.2)÷3] (947-599)+76×64

36×(913-276÷23) [192-(54+38)]×67

[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)

5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]

(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)

812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6

85+14×(14+208÷26) 120-36×4÷18+35

(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7

4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10

12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6

85+14×(14+208÷26) (58+37)÷(64-9×5)

(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)

0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6

120-36×4÷18+35 10.15-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52

32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)

[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6

5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6

3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6

5.8×(3.87-0.13)+4.2×3.74

33.02-(148.4-90.85)÷2.5

1)23+(-73)

(2)(-84)+(-49)

(3)7+(-2.04)

(4)4.23+(-7.57)

(5)(-7/3)+(-7/6)

(6)9/4+(-3/2)

(7)3.75+(2.25)+5/4

(8)-3.75+(+5/4)+(-1.5)

(9)(-17/4)+(-10/3)+(+13/3)+(11/3)

(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(11)(+1.3)-(+17/7)

(12)(-2)-(+2/3)

(13)|(-7.2)-(-6.3)+(1.1)|

(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)

(15)(-2/199)*(-7/6-3/2+8/3)

(16)4a)*(-3b)*(5c)*1/6

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-7*2-57/(3

53.(-7)*2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

1.

a^3-2b^3+ab(2a-b)

=a^3+2a^2b-2b^3-ab^2

=a^2(a+2b)-b^2(2b+a)

=(a+2b)(a^2-b^2)

=(a+2b)(a+b)(a-b)

2.

(x^2+y^2)^2-4y(x^2+y^2)+4y^2

=(x^2+y^2-2y)^2

3.

(x^2+2x)^2+3(x^2+2x)+x^2+2x+3

=(x^2+2x)^2+4(x^2+2x)+3

=(x^2+2x+3)(x^2+2x+1)

=(x^2+2x+3)(x+1)^2

4.

(a+1)(a+2)+(2a+1)(a-2)-12

=a^2+3a+2+2a^2-3a-2-12

=3a^2-12

=3(a+2)(a-2)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-7*2-57/(3

53.(-7)*2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

1.

a^3-2b^3+ab(2a-b)

=a^3+2a^2b-2b^3-ab^2

=a^2(a+2b)-b^2(2b+a)

=(a+2b)(a^2-b^2)

=(a+2b)(a+b)(a-b)

2.

(x^2+y^2)^2-4y(x^2+y^2)+4y^2

=(x^2+y^2-2y)^2

3.

(x^2+2x)^2+3(x^2+2x)+x^2+2x+3

=(x^2+2x)^2+4(x^2+2x)+3

=(x^2+2x+3)(x^2+2x+1)

=(x^2+2x+3)(x+1)^2

4.

(a+1)(a+2)+(2a+1)(a-2)-12

=a^2+3a+2+2a^2-3a-2-12

=3a^2-12

=3(a+2)(a-2)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

初一上册100道数学计算题及答案。

初二下100道数学计算题

x=80°

详解:

如图所示

∵弧AD=DC=CB,半圆弧=AB弧分为3等分

∴连接圆心角为60°且,△ADO、△DCO、△CBO为等腰三角形

又∵圆中同弧所对的圆周角相等

∴弧DE对角,∠DCE=∠DBE

∴x=∠DCO+∠OCE

x=60°+20°=80°

初二数学试题

问题一:初中数学几何题设∠ABO=X

∵ABCD

∴∠ABC=∠BCD=40o

∵AB=AO

∴∠O=∠ABO=X

∠CAB=2X

∵CB=AB

∴∠ACB=CAB=2X

∴2X+40+x+x=180

∴x=35o

∴∠COD=35o

问题二:初中数学题目,几何题【题目】

已知在△ABC中,∠CAB=2α,且0<α<30°,AP平分∠CAB,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,求∠APC的度数(用含α的代数式表示)。

【解答】

【解法一】

解:

延长AC至M,使AM=AB,连接PM,BM(如图1)

∵AP平分∠CAB,∠CAB=2α

∴∠1=∠2= α

在△AMP和△ABP中:

∵AM=AB,∠1 =∠2,AP=AP

∴△AMP≌△ABP

∴PM=PB,∠3 =∠4

∵∠ABC=60°-α,∠CBP=30°

∴∠4=(60°-α)-30°=30°-α

∴∠3 =∠4 =30°-α

∵△AMB中,AM=AB

∴∠AMB=∠ABM=(180°-∠MAB)÷2 =(180°-2α)÷2 =90°-α

∴∠5=∠AMB-∠3= (90°-α)-(30°-α)=60°

∴△PMB为等边△

∵∠6=∠ABM-∠ABC = (90°-α)-(60°-α)=30°

∴∠6=∠CBP

∴BC平分∠PBM

∴BC垂直平分PM

∴CP=CM

∴∠7 =∠3 = 30°-α

∴∠ACP=∠7+∠3=(30°-α)+(30°-α)=60°-2α

∴△ACP中,∠APC=180°-∠1-∠ACP

=180°-α-(60°-2α)

=120°+α

【解法二】

解:

在AB上截取AM,使AM=AC,连接PM,延长AP交BC于N,连接MN(如图2)

∵AP平分∠CAB,∠CAB=2α

∴∠1=∠2=α

在△ACN和△AMN中:

∵AC=AM,∠1 =∠2, AN=AN

∴△ACN≌△AMN

∴∠3 =∠4

∵∠ABC=60°-α

∴∠3=∠2+∠NBA=α+(60°-α) =60°

∴∠3 =∠4 =60°

∴∠5=180°-∠3-∠4=180°-60°-60°=60°

∴∠4 =∠5

∴NM平分∠PNB

∵∠CBP=30°

∴∠6=∠3-∠NBP=60°-30°=30°

∴∠6=∠NBP

∴NP=NB

∴NM垂直平分PB

∴MP=MB

∴∠7 =∠8

∴∠6+∠7 =∠NBP+∠8

即∠NPM=∠NBM =60°-α

∴∠APM=180°-∠NPM =180°-(60°-α)=120°+α

在△ACP和△AMP中:

∵AC=AM, ∠1 =∠2, AP=AP

∴△ACP≌△AMP

∴∠APC=∠APM

∴∠APC=120°+α

问题三:初中数学几何证明题证明:如图,过点C做AD的平行线交BA的延长线于点D

则AD∥CE

∴BA/AE=BD/DC,∠BAD=∠E,∠CAD=∠ACD

∵AD为∠BAC的角平分线

∴∠BAD=∠CAD

∴∠E=∠ACD

∴AC=AE

∴BA/AC=BD/DC

问题四:初中数学,几何题 100分 感觉题目有问题啊第1道F随便移的话BF在变等式肯定不能成立啊

问题五:初中数学几何题这题主要是考查反证法,翻折变换(折叠问题),解直角三角形,等边三角形的性质.

解:

1)∵B'和B关于EF对称

∴B'E=BE

∴c=OB'+B'E+OE

=OB'+BE+OE

=x+OB=x+2+√3.

2)当B'E∥y轴时,∠EB'O=90°.

∵ΔOAB为等边三角形

∴∠EOB'=60°

∴OB'=1/2EO.

设OB'=a',则OE=2a.

在Rt△OEB'中,tan∠EOB'=B'E/B'O

∴B'E=B'Otan∠EOB'=√3a

∵B'E+OE=BE+OE=2+√3

∴a=1

∴B'(1,0),E(1,√3)

3)答:不能.

理由如下:

∵∠EB'F=∠B=60°

∴要使ΔEB'F成为直角三角形,则90°角只能是∠B'EF或∠B'FE.

假设∠B'EF=90°

∵ΔFB'E与ΔFBE关于FE对称

∴∠BEF=∠B'EF=90°

∴∠BEB'=180°

则B'、E、B三点在同一直线上,B'与O重合.这与题设矛盾。

以上就是数学题目初中的全部内容,问题一:初中数学几何题 设∠ABO=X ∵ABCD ∴∠ABC=∠BCD=40o ∵AB=AO ∴∠O=∠ABO=X ∠CAB=2X ∵CB=AB ∴∠ACB=CAB=2X ∴2X+40+x+x=180 ∴x=35o ∴∠COD=35o 问题二:初中数学题目,几何题 【题目】已知在△ABC中,∠CAB=2α,且0<α<30°,AP平分∠CAB。

猜你喜欢