目录2017高考数学真题 2017河北高考数学平均分 2019河北中考政治真题 2017高考数学全国卷1 高考数学真题2019
http://wenku.baidu.com/search?word=%C8%AB%B9%FA%BE%ED%B8%DF%BF%BC&lm=0&od=0&pn=0这个网址去世猛下吧!肯定没错。要不就买天利38套,我们那时就用这个滚拿,还有五年高大返搭考三年模拟
一、全国乙卷高考数学试卷真题和答案解析全国乙卷高考数学试卷真题和答案解析正在快马加鞭的整理当真,考试结束后我们第一时间发布word文字版。考生可以在线点击阅览: http://www.creditsailing.com/zt/gaokao/daxuepaiming.html
二、全国乙卷高考数学卷答题技巧
第一个技巧,看清审题与解题
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如至少,a>0,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。
第二个技巧,利用好快与准
只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
第三种解题技巧:会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。如去年理17题三角函数图像变换,许多考生心中有数却说不清楚,扣分者也不在少数。这样的失分情况,的确很冤枉,所以高中不希望我们的同学也犯这样的错误!
第四种解题技巧:难题与容易题的关系
一般来说,当我们拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。但是,近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间!此外,高中学习方法指导名师建议我们的同学,在解答题时都应设置了层次分明的台阶,因为看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有备昌的分数。
三、全国乙卷哪些省份使用
适用地区:河南、山西、江西、安徽、甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西
四、全国甲卷和乙卷的区别
1、乙卷难度比甲卷高。乙卷英语和物理科目能够明显看出来比甲卷难,不过一些学生会觉得甲卷更难一些,这根据学生学习的大体程度去判断。不过乙卷和甲卷都会在高考中使用。
2、乙卷和甲卷使用的省份不同。乙卷使用的省区:山旁友西、河北、河南、安徽、湖北、湖南、江西、福建等等;甲卷使用的省区:陕西、重庆、青海、新疆、吉林、辽宁、内蒙古等等。
3、乙卷和甲卷里面的科目内容也不同。乙卷科目:英语和综合;甲卷科目:数学、语文、英语。
五、全国乙卷高考数学试卷答案解析 (一).2022年全国乙卷高考数学试卷试题难不难,附试卷分析和解答
(二).2019年高考全国乙卷理科数学试卷试题答案解析(WORD)
(三).2019年高考全国乙卷文科数学试卷试题答案解析(WORD)
(四).2019年江西高考全国乙卷(I卷)理科数学试卷试题答案解析(WORD)
(五).2019年江西高考全国乙卷(I卷)文科数学试卷试题答案解析(WORD)
(六).2019年山西高考全国乙卷(I卷)理科数学试卷试题答案解析(WORD)
(七).2019年山西高考全国乙卷(I卷)文科数学试卷试题答案解析(WORD)
(八).2019年河北高考全国乙卷(I卷)理科数学试卷试题答案解析(WORD)
(九).2019年河北高考全国乙卷(I卷)文科数学试卷试题答案解析(WORD)
(十).2019年河南高考全国乙卷(I卷)理科数学试卷试题答案仿启扒解析(WORD)
;
高中文理综合合集百度网行顷盘
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中文理腔带汪综合优质资料,包括:试题试卷、课件、教材伍仔、、各大名师网校合集。
理科的大学和专业比较多,毕业后的工作也是比较有专业性的,文科的专业轮岩毁比较少,工作专业性不强,也腊备就是学其他专业的人也枣和很容易上手。 理科的学习比较有趣,会有实验什么的。 学理科能培养人的思考能力,会变得理性。
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ 20.(12分) 已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点烂启且与C相交于A,拿世B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 21.(12分) 已知函数=ae²^x+(a﹣2)e^x﹣x. (1)讨论的单调性; (2)若有两个零点,求a的取值范围. (二)选消历肢考题:共10分。 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修4-4,坐标系与参数方程](10分) 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为. (1)若a=-1,求C与l的交点坐标; (2)若C上的点到l的距离的最大值为,求a. 23.[选修4—5:不等式选讲](10分) 已知函数f(x)=–x²+ax+4,g(x)=│x+1│+│x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.