七年级下册数学题目及答案?(2)两所学校报名参加旅游的学生各有多少人? 七年级数学下册期末测试题参考答案 一、精心选一选(本题共10小题,每小题3分,共30分) 题号1 2 3 4 5 6 7 8 9 10 答案C A A D D A B B D B 二、那么,七年级下册数学题目及答案?一起来了解一下吧。
虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。下面给大家分享一些关于七年级下册数学试卷及参考答案,希望对大家有所帮助。
一、选择题(每小题4分,共40分)
1.﹣4的绝对值是()
A.B.C.4D.﹣4
考点:绝对值.
分析:根据一个负数的绝对值是它的相反数即可求解.
解答:解:﹣4的绝对值是4.
故选C.
点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.
绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
2.下列各数中,数值相等的是()
A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2
考点:有理数的乘方.
分析:根据乘方的意义,可得答案.
解答:解:A32=9,23=8,故A的数值不相等;
B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等;
C3×22=12,(3×2)2=36,故C的数值不相等;
D﹣32=﹣9,(﹣3)2=9,故D的数值不相等;
故选:B.
点评:本题考查了有理数的乘方,注意负数的偶次幂是正数,负数的奇次幂是负数.
3.0.3998四舍五入到百分位,约等于()
A.0.39B.0.40C.0.4D.0.400
考点:者桥腊近似数和有效数字.
分析:把0.3998四舍五入到百分位就是对这个数百分位以后的数进行四舍五入.
解答:解:0.3998四舍五入到百分位,约等于0.40.
故选B.
点评:本题考查了四舍五入的方法,是需要识记的内容.
4.如果是三次二项式,则a的值为()
A.2B.﹣3C.±2D.±3
考点:多项式.
专题消胡:计算题.
分析:明白三次二项式是多项式里面次数的项3次,有两个单项式的和.所以可得结果.
解答:解:因为次数要有3次得单项式,
所以|a|=2
a=±2.
因为是两项式,所以a﹣2=0
a=2
所以a=﹣2(舍去).
故选A.
点评:本题考查对三次二项式概念的理解,关键知道多项式的次数是3,含有两项.
5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()
A.2pB.4p﹣2qC.﹣2pD.2p﹣2q
考点:整式的加减.
专题:计算题.
分析:根据整式的加减混合运算法则,利用去括号法则有括号先去小括号,再去中括号,最后合并同类项即可求出答案.
解答:解:原式=p﹣[q﹣2p﹣p+q],
=p﹣q+2p+p﹣q,
=﹣2q+4p,
=4p﹣2q.
故选B.
点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号).
6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()
A.﹣1B.0C.1D.
考点:一元一次方程的解.
专题:计算题.
分析:根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.
解答:解:∵x=2是关于x的方程2x+3m﹣1=0的解,
∴2×2+3m﹣1=0,
解得:m=﹣1.
故选:A.
点评:本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.
7.某校春季运动会比赛中首滑,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()
A.B.
C.D.
考点:由实际问题抽象出二元一次方程组.
分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40.
解答:根据(1)班与(5)班得分比为6:5,有:
x:y=6:5,得5x=6y;
根据(1)班得分比(5)班得分的2倍少40分,得x=2y﹣40.
可列方程组为.
故选:D.
点评:列方程组的关键是找准等量关系.同时能够根据比例的基本性质对等量关系①把比例式转化为等积式.
8.下面的平面图形中,是正方体的平面展开图的是()
A.B.C.D.
考点:几何体的展开图.
分析:由平面图形的折叠及正方体的展开图解题.
解答:解:选项A、B、D中折叠后有一行两个面无法折起来,而且缺少一个底面,不能折成正方体.
故选C.
点评:熟练掌握正方体的表面展开图是解题的关键.
9.如图,已知∠AOB=∠COD=90°,又∠AOD=170°,则∠BOC的度数为()
A.40°B.30°C.20°D.10°
考点:角的计算.
专题:计算题.
分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从而易求∠AOB+∠COD﹣∠AOD,即可得x=10°.
解答:解:设∠BOC=x,
∵∠AOB=∠COD=90°,
∴∠AOC+x=∠BOD+x=90°,
∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°,
即x=10°.
故选D.
点评:本题考查了角的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表示成几个角和的形式.
10.小明把自己一周的支出情况用如图所示的统计图来表示,则从图中可以看出()
A.一周支出的总金额
B.一周内各项支出金额占总支出的百分比
C.一周各项支出的金额
D.各项支出金额在一周中的变化情况
考点:扇形统计图.
分析:根据扇形统计图的特点进行解答即可.
解答:解:∵扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,
∴从图中可以看出一周内各项支出金额占总支出的百分比.
故选B.
点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键.
二、填空题(每小题5分,共20分)
11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最小的数的差等于17.
考点:有理数大小比较;有理数的减法;有理数的乘方.
分析:根据有理数的乘方法则算出各数,找出的数与最小的数,再进行计算即可.
解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9,
∴的数是(﹣3)2,最小的数是﹣23,
∴的数与最小的数的差等于=9﹣(﹣8)=17.
故答案为:17.
点评:此题考查了有理数的大小比较,根据有理数的乘方法则算出各数,找出这组数据的值与最小值是本题的关键.
12.已知m+n=1,则代数式﹣m+2﹣n=1.
考点:代数式求值.
专题:计算题.
分析:分析已知问题,此题可用整体代入法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代入求值.
解答:解:﹣m+2﹣n=﹣(m+n)+2,
已知m+n=1代入上式得:
﹣1+2=1.
故答案为:1.
点评:此题考查了学生对数学整体思想的掌握运用及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式.
13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7.
考点:同类项.
专题:计算题.
分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值.
解答:解:由题意可知,m=2n﹣3,2m+3n=8,
将m=2n﹣3代入2m+3n=8得,
2(2n﹣3)+3n=8,
解得n=2,
将n=2代入m=2n﹣3得,
m=1,
所以3m﹣5n=3×1﹣5×2=﹣7.
故答案为:﹣7.
点评:此题主要考查学生对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8.
14.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm.
考点:两点间的距离.
专题:计算题.
分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.
解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm;
②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm.
故答案为6cm或2cm.
点评:本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
三、计算题(本题共2小题,每小题8分,共16分)
15.
考点:有理数的混合运算.
专题:计算题.
分析:在进行有理数的混合运算时,一是要注意运算顺序,先算高一级的运算,再算低一级的运算,即先乘方,后乘除,再加减.同级运算按从左到右的顺序进行.有括号先算括号内的运算.二是要注意观察,灵活运用运算律进行简便计算,以提高运算速度及运算能力.
解答:解:,
=﹣9﹣125×﹣18÷9,
=﹣9﹣20﹣2,
=﹣31.
点评:本题考查了有理数的综合运算能力,解题时还应注意如何去绝对值.
16.解方程组:.
考点:解二元一次方程组.
专题:计算题.
分析:根据等式的性质把方程组中的方程化简为,再解即可.
解答:解:原方程组化简得
①+②得:20a=60,
∴a=3,
代入①得:8×3+15b=54,
∴b=2,
即.
点评:此题是考查等式的性质和解二元一次方程组时的加减消元法.
四、(本题共2小题,每小题8分,共16分)
17.已知∠α与∠β互为补角,且∠β的比∠α大15°,求∠α的余角.
考点:余角和补角.
专题:应用题.
分析:根据补角的定义,互补两角的和为180°,根据题意列出方程组即可求出∠α,再根据余角的定义即可得出结果.
解答:解:根据题意及补角的定义,
∴,
解得,
∴∠α的余角为90°﹣∠α=90°﹣63°=27°.
故答案为:27°.
点评:本题主要考查了补角、余角的定义及解二元一次方程组,难度适中.
18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和.
考点:两点间的距离.
分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进而可得出结论.
解答:解:∵CD=1cm,D是CB中点,
∴BC=2cm,
又∵C是AB的中点,
∴AC=2cm,AB=4cm,
∴AD=AC+CD=3cm,
∴AC+AD+AB=9cm.
点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
五、(本题共2小题,每小题10分,共20分)
19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值.
考点:整式的加减.
专题:计算题.
分析:将A、B、C的值代入A﹣2B+3C去括号,再合并同类项,从而得出答案.
解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a),
=a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a,
=3a3+7a2﹣6a.
点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
20.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.
考点:一元一次方程的应用.
专题:数字问题;方程思想.
分析:先设这个两位数的十位数字和个位数字分别为x,7﹣x,根据题意列出方程,求出这个两位数.
解答:解:设这个两位数的十位数字为x,则个位数字为7﹣x,
由题意列方程得,10x+7﹣x+45=10(7﹣x)+x,
解得x=1,
∴7﹣x=7﹣1=6,
∴这个两位数为16.
点评:本题考查了数字问题,方程思想是很重要的数学思想.
六.(本题满分12分)
21.取一张长方形的纸片,如图①所示,折叠一个角,记顶点A落下的位置为A′,折痕为CD,如图②所示再折叠另一个角,使DB沿DA′方向落下,折痕为DE,试判断∠CDE的大小,并说明你的理由.
考点:角的计算;翻折变换(折叠问题).
专题:几何图形问题.
分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利用平角为180°,易求得∠CDE=90°.
解答:解:∠CDE=90°.
理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC,
∴∠CDA′=∠ADA′,∠A′DE=∠BDA,
∴∠CDE=∠CDA′+∠A′DE,
=∠ADA′+∠BDA,
=(∠ADA′+∠BDA′),
=×180°,
=90°.
点评:本题考查角的计算、翻折变换.解决本题一定明白对折的两个角相等,再就是运用平角的度数为180°这一隐含条件.
七.(本题满分12分)
22.为了“让所有的孩子都能上得起学,都能上好学”,国家自2007年起出台了一系列“资助贫困学生”的政策,其中包括向经济困难的学生免费提供教科书的政策.为确保这项工作顺利实施,学校需要调查学生的家庭情况.以下是某市城郊一所中学甲、乙两个班的调查结果,整理成表(一)和图(一):
类型班级城镇非低保
户口人数农村户口人数城镇户口
低保人数总人数
甲班20550
乙班28224
(1)将表(一)和图(一)中的空缺部分补全.
(2)现要预定2009年下学期的教科书,全额100元.若农村户口学生可全免,城镇低保的学生可减免,城镇户口(非低保)学生全额交费.求乙班应交书费多少元?甲班受到国家资助教科书的学生占全班人数的百分比是多少?
(3)五四青年节时,校团委免费赠送给甲、乙两班若干册科普类、文学类及艺术类三种图书,其中文学类图书有15册,三种图书所占比例如图(二)所示,求艺术类图书共有多少册?
考点:条形统计图.
分析:(1)由统计表可知:甲班农村户口的人数为50﹣20﹣5=25人;乙班的总人数为28+22+4=54人;
(2)由题意可知:乙班有22个农村户口,28个城镇户口,4个城镇低保户口,根据收费标准即可求解;
甲班的农村户口的学生和城镇低保户口的学生都可以受到国家资助教科书,可以受到国家资助教科书的总人数为25+5=30人,全班总人数是50人,即可求得;
(3)由扇形统计图可知:文学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分比即可求解.
解答:解:
(1)补充后的图如下:
(2)乙班应交费:28×100+4×100×(1﹣)=2900元;
甲班受到国家资助教科书的学生占全班人数的百分比:×100%=60%;
(3)总册数:15÷30%=50(册),
艺术类图书共有:50×(1﹣30%﹣44%)=13(册).
点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
八、(本题满分14分)
23.如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.
(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.
(4)从(1)(2)(3)的结果你能看出什么规律?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?
考点:角的计算.
专题:规律型.
分析:(1)首先根据题中已知的两个角度数,求出角AOC的度数,然后根据角平分线的定义可知角平分线分成的两个角都等于其大角的一半,分别求出角MOC和角NOC,两者之差即为角MON的度数;
(2)(3)的计算方法与(1)一样.
(4)通过前三问求出的角MON的度数可发现其都等于角AOB度数的一半.
(5)模仿线段的计算与角的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长.
解答:解:(1)∵∠AOB=90°,∠BOC=30°,
∴∠AOC=90°+30°=120°,
又OM平分∠AOC,
∴∠MOC=∠AOC=60°,
又∵ON平分∠BOC,
∴∠NOC=∠BOC=15°
∴∠MON=∠MOC﹣∠NOC=45°;
(2)∵∠AOB=α,∠BOC=30°,
∴∠AOC=α+30°,
又OM平分∠AOC,
∴∠MOC=∠AOC=+15°,
又∵ON平分∠BOC,
∴∠NOC=∠BOC=15°
∴∠MON=∠MOC﹣∠NOC=;
(3)∵∠AOB=90°,∠BOC=β,
∴∠AOC=90°+β,
又OM平分∠AOC,
∴∠MOC=∠AOC=+45°,
又∵ON平分∠BOC,
∴∠NOC=∠BOC=
∴∠MON=∠MOC﹣∠NOC=45°;
(4)从(1)(2)(3)的结果可知∠MON=∠AOB;
(5)
①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长;
②若把线段AB的长改为a,其余条件不变,求线段MN的长;
③若把线段BC的长改为b,其余条件不变,求线段MN的长;
④从①②③你能发现什么规律.
规律为:MN=AB.
点评:本题考查了学会对角平分线概念的理解,会求角的度数,同时考查了学会归纳总结规律的能力,以及会根据角和线段的紧密联系设计实验的能力.
七年级下册数学试卷及参考答案相关文章:
★七年级数学下册复习题答案
★人教版七年级数学下册课本练习题答案
★七年级数学下册练习册参考答案
★2020七年级数学下册练习册答案3篇
★2020七年级下册数学复习题
★七年级下数学练习册答案
★七年级数学下学期课堂练习册答案
★人教版七年级下数学期末试卷
★七年级数学下册期末试卷题
★2020七年级下数学复习重点试题
这篇关于七年级下册数学期末考试卷及答案,是 考 网特地为大家整理的,希望对大家有所帮助!
一、精心选一选:(本大题共8小题,每小题4分,共32分)
1、在平面直角坐标系中,点P(3,4)关于x轴对称的点的坐标是 ( )
A、(-3,4) B、(3,-4)
C、(-3,-4) D、(4,3)
2、不等式组 的正整数解的个数是 ( )
A、1 B、2 C、3 D、4
3、某市为迎接大学生冬季运动会,正在进行城区人行道路翻新,准备只选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是 ( )
A、正三角形 B、正方形 C、正六边形 D、正八边形
4、下列调查方式中合适的是 ( )
A、要了解一批空调使用寿命,采用全面调查方式
B、调查你所在班级同学的身高,采用抽样调查方式
C、环保部门调查木兰溪尺竖某段水域的水质情况采用抽样调查方式
D、调查仙游县中学生每天的就寝时间,采用全面调查方式
5、已知三元一次方程组 ,则 ( )
A、5 B、6 C、7 D、8
6、已知如图,AD ∥CE,则∠A+∠B+∠C= ( )
A、180°
B、270°
C、360°
D、540°
7、如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为 ( )
A、400㎝2
B、500㎝2
C、600㎝2
D、4000㎝2
8、若方程组 的解满足 ,则m的取值卖困链范围是 ( )
A、m>-6 B、m<6
C、m6
二、细心填一填(本大题共8小题,每小题4分,共32分)
9、不等式 的解集是__________。
希望你能够放松心情,不要紧张。相信你考人教版七年级数学下册单元测试好成绩是没问题的!我整理了关于人教版七年级数学下册相交线与平行线的单元测试题及答案,希望对大家有帮助!
人教版七年级数学下册相交线与平行线单元测试题如轮
(时间:90分钟,满分:100分)
一、选择题(每小题3分,共30分)
1. (2015•浙江金华中考)已知∠α=35°,则∠α的补角的度数是( )
A.55° B.65° C.145° D.165°
2.(2015•广东广州中薯橡禅考改编)将图中所示的图案平移后得到的图案是( )
A. B. C. D.
3.(2015•湖北宜昌中考)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数
是( )
A.60° B.50° C.40° D.30°
第3题图 第4题图
4.(2015•湖北黄冈中考)如图,a∥b,∠1=∠2,∠3=40°,则∠4等于( )A.40° B.50° C.60° D.70°
5.(2015•四川资阳中考)如图所示,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )
A.30° B.35° C.40° D.45°
6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()
A.1个 B.2个 C.3个 D.4个
7.如图,点 在 的延长线上,下列条件中不能判定AB∥CD的是()
A.∠1=∠2 B.∠3=∠4
C.∠5=∠ D.∠ +∠BDC=180°
8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()
A.2个 B.3个 C.4个 D.5个
9. 下列条件中能得到平行线的是()
①邻数尘补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.
A.①② B.②③ C.② D.③
10. 两平行直线被第三条直线所截,同位角的平分线()
A.互相重合 B.互相平行
C.互相垂直 D.相交
二、填空题(每小题3分,满分24分)
11. (2015•吉林中考)图中是对顶角量角器,用它测量角的原理是 .
12.(2015•湖南株洲中考)如图, ∥ ,∠1=120°,∠A=55°,则∠ACB的大小是.
第12题图 第13题图 第14题图
13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .
14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是 .
15.(2013•江西中考)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为 .
第15题图 第16题图
16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则
∠2= .
17.如图,直线a∥b,则∠ACB= .
第17题图 第18题图
18.如图,已知AB∥CD,∠1=60°,则∠2= 度.
三、解答题(共46分)
19.(7分)读句画图:如图,直线CD与直线AB相
交于C,
根据下列语句画图:
(1)过点P作PQ∥CD,交AB于点Q;
(2)过点P作PR⊥CD,垂足为R;
(3)若∠DCB=120°,猜想∠PQC是多少度?并说
明理由.
第19题图
20.(7分)如图,方格中有一条美丽可爱的小金鱼.
(1)若方格的边长为1,则小鱼的面积为 ;
(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)
第20题图
21.(8分)已知:如图,∠BAP+∠APD = ,∠1 =∠2.求证:∠E =∠F.
第21题图 第22题图
22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED∥FB.
23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.
第23题图 第24题图
24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.
人教版七年级数学下册相交线与平行线单元测试题参考答案
1. C 解析:∵ ∠α=35°,∴ ∠α的补角的度数为180°35°=145°,故选C.
2. C 解析:根据平移的性质可知C正确.
3. C 解析:因为FE⊥DB,所以∠FED=90°,由∠1=50°可得∠FDE=90°-50°=40°.因为AB∥CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.
4. D 解析:因为a∥b,所以∠2=∠4.
又∠2=∠1,所以∠1=∠4.
因为∠3=40°,所以∠1=∠4= =70°.5. C 解析:由AB∥CD可得,∠FEB=∠C=70°,∵ ∠F=30°,又∵ ∠FEB=∠F+∠A,
∴ ∠A=∠FEB ∠F=70° 30°=40°.故选项C是正确的.
6. C 解析:∵ AB∥CD,∴ ∠ABC=∠BCD.
设∠ABC的对顶角为∠1,则∠ABC=∠1.
又∵ AC⊥BC,∴ ∠ACB=90°,
∴ ∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,
因此与∠CAB互余的角为∠ABC,∠BCD,∠1.
故选C.
7. A 解析:选项B中,∵ ∠3=∠4,∴ AB∥CD (内错角相等,两直线平行),故正确;
选项C中,∵ ∠5=∠B,∴ AB∥CD (内错角相等,两直线平行),故正确;
选项D中,∵ ∠B+∠BDC=180°,∴ AB∥CD(同旁内角互补,两直线平行),故正确;
而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵ ∠1=∠2,∴ AC∥BD,故A错误.选A.
8. D 解析 :如题图所示,∵ DC∥EF,∴ ∠DCB=∠EFB.
∵ DH∥EG∥BC,
∴ ∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,
故与∠DCB相等的角共有5个.故选D.
9. C 解析 :结合已知条件,利用平行线的判定定理依次推理判断.
10. B 解析:∵ 两条平行直线被第三条直线所截,同位角相等,
∴ 它们角的平分线形成的同位角相等,∴ 同位角相等的平分线平行.
故选B.
11. 对顶角相等 解析:根据图形可知量角器测量角的原理是:对顶角相等.
12. 65° 解析:∵ l∥m,∴ ∠ABC=180°-∠1=180°-120°=60°.
在△ABC中,∠ACB=180°-∠ABC-∠A=180°-60°-55°=65°.
13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短
解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,
∴ 沿AB开渠,能使所开的渠道最短.
14. ∠1+∠2=90° 解析:∵ 直线AB、EF相交于O点,∴ ∠1=∠DOF.
又∵ AB⊥CD,∴ ∠2+∠DOF=90°,∴ ∠1+∠2=90°.
15. 65° 解析:∵∠1=155°,∴∠EDC=180°-155°=25°.
∵DE∥BC,∴∠C=∠EDC=25°.
∵在△ABC中,∠A=90°,∠C=25°,
∴∠B=180°-90°-25°=65°.
故答案为65°.
16. 54° 解析:∵ AB∥CD,
∴ ∠BEF=180° ∠1=180° 72°=108°,∠2=∠BEG.
又∵ EG平分∠BEF,
∴ ∠BEG=∠BEF=×108°=54°,
故∠2=∠BEG=54°.
17. 78° 解析:延长BC与直线a相交于点D,
∵ a∥b,∴ ∠ADC=∠DBE=50°. ∴ ∠ACB=∠ADC +28°=50°+28°=78°.
故应填78°.
18. 120 解析:∵AB∥CD,∴∠1=∠3,
而∠1=60°,∴∠3=60°.
又∵∠2+∠3=180°,∴∠2=180°-60°=120°.
故答案为120.
19.解:(1)(2)如图所示.
第19题答图
(3)∠PQC=60°.
理由:∵ PQ∥CD,∴ ∠DCB+∠PQC=180°.
∵ ∠DCB=120°,∴ ∠PQC=180° 120°=60°.
20. 解:(1)小鱼的面积为7×6 ×5×6 ×2×5 ×4×2 ××1 × ×1 1=16.
(2)将每个关键点向左平移3个单位,连接即可.
第20题答图
21.证明:∵ ∠BAP+∠APD = 180°,∴ AB∥CD.∴ ∠BAP =∠APC.
又∵ ∠1 =∠2,∴ ∠BAP−∠1 =∠APC−∠2.
即∠EAP =∠APF.∴ AE∥FP.∴ ∠E =∠F.
22.证明:∵ ∠3 =∠4,∴ AC∥BD.∴ ∠6+∠2+∠3 = 180°.
∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°.
∴ ED∥FB.
23. 解:∵ DE∥BC,∠AED=80°,∴ ∠EDC=∠BCD,∠ACB=∠AED=80°.
∵ CD平分∠ACB,
∴ ∠BCD= ∠ACB=40°,∴ ∠EDC=∠BCD=40°.
24. 解:∵ AB∥CD,∴ ∠B+∠BCE=180°(两直线平行,同旁内角互补).
∵ ∠B=65°,∴ ∠BCE=115°.
∵ CM平分∠BCE,∴ ∠ECM= ∠BCE =57.5°.
∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN=90°,
以下是初一频道 为大家提供的《七年级数学下册期中试卷及答案》,供大家参考!
一、选择题:(共10小题,每小题2分,共20分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在相应括号内.
1.(2分)如图,直线a∥b,直线c是截线,如果∠1=115°,那么∠2等于()
A. 165° B. 135° C. 125° D. 115°
考点: 平行线的性质..
分析: 根据平行线性质推出∠2=∠1,求出即可.
解答: 解:∵直线a∥b,∠1=115°,
∴∠2=∠1=115°,
故选D.
点评: 本题考查了平行线性质的应用,注意:两直线平行,同位角相等.
2.(2分)已知:如图,下列条件中,不能判断直线L1∥L2的是()
A. ∠1=∠3 B. ∠4=∠5 C. ∠2+∠4=180° D. ∠2=∠3
考点: 平行线的判定..
分析: 依据平行线的判定定理即可判断.
解答: 解:A、内错角相等,两直线平行,故正岁悔埋确;
B、同位角相等,两直线平行,故正确;
C、同旁内角互补,两直线平行,故正确;
D、错误.
故选D.
点评: 本题考查了平行线的判定定理,正确理解定理是关键.
3.(2分)下列各式中无意义乎蚂的是()
A. B. C. D.
考点: 算术平方根..
专题: 计算题.
分析: 根据正数有两个平方根,0的平方根为0,负数没有平方根即可做出判断.
解答: 解:观察得:没有意义的式子为 .
故选C
点评: 此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.
4.(2分)“ 的平方根是± ”,用数学式子可以表示为()
A.=±B. ± =±C.=D. ﹣ =﹣
考点: 平方根..
分析: 根据一个正数的平方根有两个,且它们互为相反数可以得到答案.
解答: 解:∵一个正数的平方根有两个,且它们互为相反数,
∴“ 的平方根是± ”用数学式子表示为± =± ,
故选B.
点评: 此题主要考查平方根的定义及其应用,比较简单.解题时要牢记一个正数的平方根有两个,且它们互为相反数.
5.(2分)课间操时,小华、小军、小明的位置如图,小华对小明说,如果我的位置用(0,0)表示,小军的位置用(3,2)表示,那么你的位置可以表示成()
A. (5,4) B. (1,2) C. (4,1) D. (1,4)
考点: 坐标确定位置..
专题: 常规题型.
分析: 根据表格找出小明的位置是从小华向右一个单位,向上4个单位,写出坐标即可.
解答: 解:小明是从小华向右1个单位,向上4个单位,
∴小明的坐标是(1,4).
故选D.
点评: 本题考查了坐标位置的确定,是基础题,比较简单.
6.(2分)(2013•金湾区一模)将点P(﹣4,3)先向左平移2个单位,再向下平移2个单位得点P′,则点P′的坐标为()
A. (﹣2,5) B. (﹣6,1) C. (﹣6,5) D. (﹣2,1)
考点: 坐标与图形变化-平移..
专题: 动点型.
分析: 直接利用平移中点的变化规律求解即可.
解答: 解:将点P(﹣4,3)先向左平移2个单位,再向下平移2个单位,即坐标变为(﹣4﹣2,3﹣2),即点P′的坐标为(﹣6,1).故选B.
点评: 本题考查点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.
7.(2分)方程2x﹣3y=5、xy=3、 、3x﹣y+2z=0、x2+y=6中是二元一次方程的有()个.
A. 1 B. 2 C. 3 D. 4
考点: 二元一次方程的定义..
分析: 二元一次方程满足的条件:整式方程;含有2个未知数;未知数的次项的次数是1.
解答: 解:符合二元一次方程的定义的方程只有2x﹣3y=5;
xy=3,x2+y=6的未知数的次项的次数为2,不前亏符合二元一次方程的定义;
x+ =1不是整式方程,不符合二元一次方程的定义;
3x﹣y+2z=0含有3个未知数,不符合二元一次方程的定义;
由上可知是二元一次方程的有1个.
故选A.
点评: 主要考查二元一次方程的概念.
要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的次项的次数是1的整式方程.
8.(2分)下列各组数中① ② ③ ④ ,是方程4x+y=10的解的有()
A. 1个 B. 2个 C. 3个 D. 4个
考点: 二元一次方程的解..
专题: 方程思想.
分析: 作为一道选择题,该题的方法是把这4组答案分别代入方程,通过“左边=右边”来判断答案.
解答: 解:把① 代入得左边=10=右边;
把② 代入得左边=9≠10;
把③ 代入得左边=6≠10;
把④ 代入得左边=10=右边;
所以方程4x+y=10的解有①④2个.
故选B.
点评: 该题主要考查二元一次方程解的定义,即把x,y对应的值代入到原方程后,左右两边应该相等(左边=右边).
9.(2分)用加减消元法解方程组 时,有下列四种变形,其中正确的是()
A. B.
C. D.
考点: 解二元一次方程组..
专题: 计算题.
分析: 将第一个方程左右两边乘以2,第二个方程左右两边乘以3,即可得到结果.
解答: 解:用加减消元法解方程组 时,变形为 .
故选C
点评: 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.
10.(2分)下列命题中,正确的命题有()
①连接直线外一点到这条直线上各点的所有线段中,垂线段最短;
②若两直线被第三条直线所截,同旁内角互补;
③平面上过一点有且只有一条直线与已知直线平行;
④无论x取何值时,点P(x+1,x﹣1)都不在第二象限.
A. 1个 B. 2个 C. 3个 D. 4个
考点: 命题与定理..
分析: 根据垂线段最短对①进行判断;
根据平行线的性质对②进行判断;
根据过直线外一点有且只有一条直线与已知直线平行对③进行判断;
根据第二象限内的坐标特征对④进行判断.
解答: 解:连接直线外一点到这条直线上各点的所有线段中,垂线段最短,所以①是真命题;若两平行直线被第三条直线所截,同旁内角互补,所以②为假命题;平面上过直线外一点有且只有一条直线与已知直线平行,所以③为假命题;无论x取何值时,点P(x+1,x﹣1)都不在第二象限,所以④为真命题.
故选B.
点评: 本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
二、填空题:(每空1分,共16分)
11.(1分)(2005•宜昌)如图,直线AB、CD相交于点O,若∠1=28°,则∠2=28度.
考点: 对顶角、邻补角..
专题: 计算题.
分析: 两直线相交时,角与角之间的关系有对顶角、邻补角,要根据定义进行判定,再确定大小关系.
解答: 解:根据对顶角相等,得∠2=∠1=28°.
点评: 本题考查对顶角的性质,是简单的基础题.
12.(1分)小强手上拿着一张“8排7号”的电影票,若排数在前,列数在后可写成(8,7).
考点: 坐标确定位置..
分析: 根据要求,第一个数是排数,第二个数是号数解答.
解答: 解:“8排7号”排数在前,列数在后可写成(8,7).
故答案为:(8,7).
点评: 本题考查了坐标确定位置,读懂题目信息,理解要求是解题的关键.
13.(3分)64的算术平方根是8,平方根是±8,立方根是4.
考点: 立方根;平方根;算术平方根..
分析: 根据算术平方根、平方根、立方根的定义求出即可.
解答: 解:64的算术平方根是8,平方根是±8,立方根是4,
故答案为:8,±8,4.
点评: 本题考查了算术平方根、平方根、立方根的定义的应用,主要考查学生的计算能力.
14.(3分)在﹣ , , ,﹣ ,3.14,0, ﹣1, ,| |中,其中:整数有0,| ﹣1|;无理数有 , , ﹣1, ;有理数有﹣ ,﹣ ,3.14,0,| |.
考点: 实数..
分析: 由于无限不循环小数是无理数;有理数包括整数和分数.整数包括正整数、负整数和0;所以根据以上实数的分类解答即可.
解答: 解:整数:0,| |;
无理数:在 , , ﹣1, ;
有理数:在﹣ ,﹣ ,3.14,0,| |.
点评: 此题主要考查了实数的分类,解答此题的关键是熟知以下概念:
整数包括正整数、负整数和0;
无限不循环小数是无理数;
有理数包括整数和分数.
15.(3分) 的相反数是 ,它的绝对值是 ;到原点的距离为 的点表示的数是± .
考点: 实数的性质;实数与数轴..
分析: 根据相反数的定义,绝对值的性质解答;
根据互为相反数的两个数到原点的距离相等解答.
解答: 解:﹣ 的相反数是 ,它的绝对值是 ;
到原点的距离为 的点表示的数是± .
故答案为: , ,± .
点评: 本题考查了实数的性质,主要利用了相反数的定义,绝对值的性质,以及实数与数轴,要注意互为相反数的两个数到原点的距离相等.
16.(3分)用“>”“8,
故答案为:>.
(3)∵ > ,
∴﹣
距离数学期末考试还有不到一个月的时间了,七年级学生们在这段时间内突击做一些试题是非常有帮助的型闭。我整理了关于人教版七年级数学下册拦厅期末测试题,希望对大家有帮助!
人教版七年级数学下册期末试题
一、选择题(本大题共10小题,每小题4分,共40分.在卜衡裂每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列式子中,是一元一次方程的是( ).
A. B. C. D.
2.下列交通标志中,是轴对称图形的是( ).
3.下列现象中,不属于旋转的是( ).
A.汽车在笔直的公路上行驶 B.大风车的转动
C.电风扇叶片的转动 D.时针的转动
4.若 ,则下列不等式中不正确的是( ).
A. B. C. D.
5.解方程 ,去分母后,结果正确的是( ).
A. B.
C. D.
6.已知:关于 的一元一次方程 的解是 ,则 的值为( ).
A. B.5 C. D.
7.下列长度的各组线段能组成一个三角形的是( ).
A.3 ,5 ,8 B.1 ,2 ,3
C.4 ,5 ,10 D.3 ,4 ,5
8.下列各组中,不是二元一次方程 的解的是( ).
A. B. C. D.
9.下列正多边形的组合中,能够铺满地面的是( ).
A.正三角形和正五边形 B.正方形和正六边形
C.正三角形和正六边形 D.正五边形和正八边形
10.如果不等式组 的整数解共有3个,则 的取值范围是( ).
A. B.
C. D.
二、填空题(本大题共6小题,每小题4分,共24分)
11.当 时,代数式 与代数式 的值相等.
12.已知方程 ,如果用含 的代数式表示 ,则 .
13.二元一次方程组 的解是 .
14. 的3倍与5的和大于8,用不等式表示为 .
15.一个多边形的内角和是它的外角和的2倍,则这个多边形是 边形.
16.如图,将直角 沿BC方向平移得到
直角 ,其中 , ,
,则阴影部分的面积是 .
三、解答题(本大题共10小题,共86分.解答应写出文字说明,证明过程或演算步骤)
17.(6分)解方程: 18.(6分)解方程组:
19.(6分)解不等式组 ,并把它的解集在数轴表示出来.
20.(6分)在一次美化校园活动中,七年级(1)班分成两个小组,第一组21人打扫操场,第二组18人擦玻璃,后来根据工作需要,要使第一组人数是第二组人数的2倍,问应从第二组调多少人到第一组?
21.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如下表:
进价(元/只) 售价(元/只)
甲种节能灯 30 40
乙种节能灯 35 50
(1)求甲、乙两种节能灯各进多少只?
(2)全部售完100只节能灯后,该商场获利多少元?
22.(8分)如图,在五边形 中, , , , 平分 , 平分 ,求 的度数.
23.(10分)如图, 的顶点都在方格纸的格点上.
(1)画出 关于直线 的对称图形 ;
(2)画出 关于点 的中心对称图形 ;
(3)画出 绕点 逆时针旋转 后的图形△
24.(10分)如图,已知 ≌ ,点 在 上, 与 相交于点 ,
(1)当 , 时,线段 的长为 ;
(2)已知 , ,
①求 的度数;
②求 的度数.
25.(12分)为庆祝泉州文庙春晚,某市直学校组织学生制作并选送40盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要25元材料费,每盏创意花灯需要23元材料费,每盏现代花灯需要20元材料费.
(1)如果该校选送10盏现代花灯,且总材料费不得超过895元,请问该校选送传统花灯、创意花灯各几盏?
(2)当三种花灯材料总费用为835元时,求选送传统花灯、创意花灯、现代花各几盏?
26.(14分)你可以直接利用结论“有一个角是 的等腰三角形是等边三角形”解决下列问题:
在 中, .
(1)如图1,已知 ,则 共有 条对称轴, °, °;
(2)如图2,已知 ,点 是 内部一点,连结 、 ,将 绕点 逆时针方向旋转,使边 与 重合,旋转后得到 ,连结 ,当 时,求 的长度.
(3)如图3,在 中,已知 ,点 是 内部一点, ,点 、 分别在边 、 上, 的周长的大小将随着 、 位置的变化而变化,请你画出点 、 ,使 的周长最小,要写出画图方法,并直接写出周长的最小值.
本页可作为草稿纸使用
南安市2015—2016学年度下学期期末教学质量监测
初一数学试题参考答案及评分标准
说明:
(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.
(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.
(三)以下解答各行右端所注分数表示正确作完该步应得的累计分数.
(四)评分最小单位是1分,得分或扣分都不出现小数.
人教版七年级数学下册期末测试题参考答案
一、选择题(每小题4分,共40分).
1.A; 2.B; 3.A; 4.C; 5.B; 6.D; 7.D; 8.C; 9.C; 10.B.
二、填空题(每小题4分,共24分).
11、2; 12、 ; 13、 ; 14、 ; 15、六; 16、60.
三、解答题(10题,共86分).
17.(6分)解: ………………………………………………………2分
…………………………………………………………3分
…………………………………………………………4分
…………………………………………………………………5分
…………………………………………………………………6分
18.(6分)解: (如用代入法解,可参照本评分标准)
①×2,得 ③ …………………………………………1分
②+③,得 …………………………………………………2分
即 ………………………………………………………3分
将 代入①,得: ……………………………………4分
解得 ………………………………………………………5分
∴ . ……………………………………………………………6分
19.(6分)解:
解不等式①,得 ;………………………………………………2分
解不等式②,得 ,…………………………………………………4分
如图,在数轴上表示不等式①、②的解集如下:
………………5分
∴ 原不等式组的解集为: . ……………………………6分
20.(6分)解:设应从第二组调 人到第一组 …………………………………………1分
根据题意,得 ……………………………………3分
解得 ……………………………………………………………5分
答:应从第二组调5人到第一组. ………………………………………6分
21.(8分)解:(1)设商场购进甲种节能灯 只,购进乙种节能灯 只,……………1分
根据题意,得 , ……………………………3分
解这个方程组,得 …………………………………5分
答:甲、乙两种节能灯分别购进40、60只。
以上就是七年级下册数学题目及答案的全部内容,(1)两个方程组的解相同,所以x=3,y=4。所以此时需要解,3m+4n=5和3n+4m=2两个方程组的解。12m+16n=20 12m+9n=6 解得:m= -1;n=2。(2)由于两个方程组的解相同,且都是二元一次方程组。