当前位置: 首页 > 所有学科 > 数学

2017高考全国数学答案,2019六年级上册数学试卷

  • 数学
  • 2023-08-13

2017高考全国数学答案?随着2017年高考数学科目的结束,家长和考生最想知道的无非是高考数学试题的答案,下面我为大家提供2017年全国高考二卷理科综合试卷的试题和答案,供家长和学生们参考,祝愿应届高考学子取得理想的成绩。14.如图,那么,2017高考全国数学答案?一起来了解一下吧。

2017年全国高考数学

com/zhidao/wh%3D450%2C600/sign=4dd9327da2d3fd1f365caa3e057e0929/902397dda144ad3496d026d4daa20cf431ad8572.jpg"

2018全国一卷数学答案解析

一、选择题

1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()

A.0 B.1 C.0或 D.1或

答案:C命题立意:本题考查导数的应用,难度中等.

解题思路:直线x-y+3=0的倾斜角为45°,

切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.

易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.

2.设函数f(x)=则满足f(x)≤2的x的取值范围是()

A.[-1,2] B.[0,2]

C.[1,+∞) D.[0,+∞)

答案:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.

解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.

3.函数y=x-2sin x,x的大致图象是()

答案:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.

4.已知函数f(x)满足竖宏:当x≥4时,f(x)=2x;当x<4时,f(x)=f(x+1),则f=()

A. B. C.12 D.24

答案:D命题立意:本题考查指数式的运算,难度中等.

解题思路:利用指数式的运算法则求解.因为2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.

5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰好有5个不同的实数解,则a的取值范围是()

A.(0,1) B.(0,2) C.(1,2) D.(0,3)

答案:

A解题思路:设t=f(x),则方程为t2-at=0,解得t=0或t=a,

即f(x)=0或衡伍f(x)=a.

如图,作出函数的图象,

由函数图象可知,f(x)=0的解有两个,

故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0

6.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0

A.4 020 B.4 022 C.4 024 D.4 026

答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.

解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),从而得-f(x+2)=f(x+4)=f(x),即函数以4为周期,据题意其在一个周期内的图象如图所示.

又函数为定义在R上的奇函数,故f(0)=0,因此f(x)=+f(0)=,因此在区间(2 010,2 012)内的函数图象可由区间(-2,0)内的图象向右平移2 012个单位得到,此时两根关于直线x=2 011对称,故x1+x2=4 022.

7.已知函数满足f(x)=2f,当x[1,3]时,f(x)=ln x,若在区间内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是()

A. B.

C. D.

答案:A思路点拨:当x∈时,则1<≤3,

f(x)=2f=2ln=-2ln x.

f(x)=

g(x)=f(x)-ax在区间内有三个不同零点,即函数y=与y=a的图象在上有三个不同的交点.

当x∈时,y=-,

y′=<0,

y=-在上递减,

y∈(0,6ln 3).

当x[1,3]时,y=,

y′=,

y=在[1,e]上递增,在[e,3]上递减.

结合图象,所以y=与y=a的图象有三个交点时,a的取值范围为.

8.若函数f(x)=loga有最小值,则实数a的取值余拦册范围是()

A.(0,1) B.(0,1)(1,)

C.(1,) D.[,+∞)

答案:C解题思路:设t=x2-ax+,由二次函数的性质可知,t有最小值t=-a×+=-,根据题意,f(x)有最小值,故必有解得1

9.已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为()

A. B.

C. D.

答案:

C命题立意:本题考查函数与方程以及数形结合思想的应用,难度中等.

解题思路:由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象,当x>0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-

10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:

(1)对任意a,bR,a*b=b*a;

(2)对任意aR,a*0=a;

(3)对任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.

关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为()

A.0 B.1 C.2 D.3

答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.

当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.

二、填空题

11.已知f(x)=若f[f(0)]=4a,则实数a=________.

答案:2命题立意:本题考查了分段函数及复合函数的相关知识,对复合函数求解时,要从内到外逐步运算求解.

解题思路:因为f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.

12.设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为________.

答案:(-1,0)(0,1)命题立意:本题考查函数的奇偶性与单调性的应用,难度中等.

解题思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函数F(x)=xf(2x)在区间(-∞,0)上为减函数,又由f(x)为奇函数可得F(x)=xf(2x)为偶函数,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,当x0时,不等式解集为(0,1),故原不等式解集为(-1,0)(0,1).

13.函数f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零点之和为________.

答案:6命题立意:本题考查数形结合及函数与方程思想的应用,充分利用已知函数的对称性是解答本题的关键,难度中等.

解题思路:由于函数f(x)=|x-1|+2cos πx的零点等价于函数g(x)=-|x-1|,h(x)=2cos πx的图象在区间[-2,4]内交点的横坐标.由于两函数图象均关于直线x=1对称,且函数h(x)=2cos πx的周期为2,结合图象可知两函数图象在一个周期内有2个交点且关于直线x=1对称,故其在三个周期[-2,4]内所有零点之和为3×2=6.

14.已知函数f(x)=ln ,若f(a)+f(b)=0,且0

答案:命题立意:本题主要考查对数函数的运算,函数的值域,考查运算求解能力,难度中等.

解题思路:由题意可知,ln +ln =0,

即ln=0,从而×=1,

化简得a+b=1,

故ab=a(1-a)=-a2+a=-2+,

又0

故0<-2+<.

B组

一、选择题

1.已知偶函数f(x)在区间[0,+∞)单调递减,则满足不等式f(2x-1)>f成立的x取值范围是()

A. B.

C. D.

答案:B解析思路:因为偶函数的图象关于y轴对称,在区间[0,+∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,

2017年全国高考数学一卷及答案

随着2017年高考数学科目的结束,家长和考生最想知道的无非是高考数学试题的答案,下面我为大家提供2017年全国高考二卷理科综合试卷的试题和答案,供家长和学生们参考,祝愿应届高考学子取得理想的成拦毁绩。

14.如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环,小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力

A.一直不做功

B.一直做正功

C.始终指向大圆环圆心

D.始终背离大圆环圆心

此题答案为 B

17.如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物快以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物快落地点到轨道下端的基宽距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g)

A.v²/16g B.v²/8g C.v²/4g D.v²/2g

此题答案为 B

19.如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M,N为轨道短轴的两个端点,运行的周期为T0,若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M,Q到N的运动过程中

A.从P到M所用的时间等于T0/4

B.从Q到N阶段,机械能逐渐变大

C. 从P到简锋备Q阶段,速率逐渐变大

D.从M到N阶段,万有引力对它先做负功后做正功

此题答案为 CD

以上为全国高考二卷理科综合试卷的部分试题及答案,仅供参考。

2017年理科数学全国二卷试题

本题考察利用函数思想解决实际问题的能力。

解:连接OD交BC 于M, 连接OB,OC , 则 OD 垂直BC, 设 OM=

x(0

三棱锥 D-ABC的体积罩培判V=Sh/3=1/3*1/2*BC^2*sin60°*h=根号3*x^2*根号【(5-x)^2-x^2】=根号3*根号[x^4(25-10x)], 利用导物改数求出此函数的最大值即可。

当中判 x=2时 , Vmax=4根号15.

2019六年级上册数学试卷

2017年高考理科数学轿碰巧全国卷1试题内

容及参考答案,适用地区:河南、河北、山吵禅西、江西、湖北闭键、湖南、广东、安徽、福建

以上就是2017高考全国数学答案的全部内容,真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变。持续一段时间t1后,又突然将电场反向。

猜你喜欢