初一数学上册期末试卷?人教版初一数学上册期末测试题 一、选择题(每题3分,共30分)1.零上3℃记作 3℃,零下2℃可记作 ( )A.2 B. C.2℃ D. 2℃ 2.方程 的解的相反数是 ( )A.2 B.-2 C.3 D.-3 3.近年来,那么,初一数学上册期末试卷?一起来了解一下吧。
一、选择题(每小题3分,共30分)
1.如果+20%表示增加20%,那么﹣6%表示()
A. 增加14% B. 增加6% C. 减少6% D. 减少26%
考点: 正数和负数.
分析: 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.
解答: 解:根据正数和负数的定义可知,﹣6%表示减少6%.
故选陪宏C.
点评: 解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.
2.关于x的方程2m=x﹣3m﹣2的解为x=5,则m的值为()
A. B. C. D.
考点: 一元一次方程的解.
分析: 把x=5代入方程得到一个关于m的方程,解方程即可求得.
解答: 解:把x=5代入方程得:2m=5﹣3m﹣2,
解得:m= .
故选D.
点评: 本题考查了方程的解的定义,理解定义是关键.
3.下列判断错误的是()
A. 若x<y,则x+2010<y+2010
B. 单项式 的系数是﹣4
C. 若|x﹣1|+(y﹣3)2=0,则x=1,y=3
D. 一个有理数不是整数就是分数
考点: 单项式;有理数;非负数的性质:绝对值;有理数大小比较;非负数的性质:偶次方.
分析: 分别根据单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义对各选项进行逐一分析即可.
解答: 解:A、∵x<y,∴x+2010<y+2010,故本选项正确;
B、∵单项式﹣ 的数字因数是﹣ ,∴此单项式的系数是﹣ ,故本选项错误;
C、∵|x﹣1|+(y﹣3)2=0,∴x﹣1=0,y﹣3=0,解得x=1,y=3,故本选项正确;
D、∵整数和分数统称为有理数,∴一个有理数不是整数就是分数,故本选项正确.
故选:B.
点评: 本题考查的是单项式,熟知单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义是解答此题的关键.
4.下列去括号结果正确的是()
A. a2﹣(3a﹣ b+2c)=a2﹣3a﹣b+2c B. 3a ﹣[4a﹣(2a﹣7)]=3a﹣4a﹣2a+7
C. (2x﹣3y)﹣(y+4x)=2x﹣3y﹣y﹣4x D. ﹣(2x﹣y)+(x﹣1)=﹣2x﹣y+x﹣1
考点: 去括号与添括号.
分析: 根据去括号法则去括号,再判断即可.
解答: 解:A、a2﹣(3a﹣b+2c)=a2﹣3a+b﹣2c,故本选项错误;
B、3a﹣[4a﹣(2a﹣7)]=3a﹣4a+2a﹣7,故本选项错误;
C、(2x﹣3y)﹣(y+4x)=2x﹣3y﹣y﹣4x,故本选项正确;
D、﹣(2x﹣y)+(x﹣1)=﹣2x+y+x﹣1,故本选项错误;
故选C.
点评: 本题考查了去括号法则的应用,注意:当括号前是“+”时,把括号和它前面的“+”去掉,括号内的各项都不改变符号,当括号前是“﹣闭知”时,把括号和它前面的“﹣”去掉,括号内的各项都改变符号.
5.“中国梦”成为2013年人们津津乐道的话题,小明在“百度”搜索“中国梦”,找到相关结果约为46800000,数据46800000用科学记数法表示为()
A. 468×105 B. 4.68×105 C. 4.68×107 D. 0.468×108
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于46 800000有芦态册8位,所以可以确定n=8﹣1=7.
解答: 解:46 800 000=4.68×107.
故选C.
点评: 此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
6.把方程3x+ 去分母正确的是()
A. 18x+2(2x﹣1)=18﹣3(x+1) B. 3x+(2x﹣1)=3﹣(x+1)
C. 18x+(2x﹣1)=1 8﹣(x+1) D. 3x+2(2x﹣1)=3﹣3(x+1)
考点: 解一元一次方程.
分析: 同时乘以各分母的最小公倍数,去除分母可得出答案.
解答: 解:去分母得:18x+2(2x﹣1)=18﹣3(x+1).
故选:A.
点评: 本题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项.
7.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为()
A. 105元 B. 100元 C. 108元 D. 118元
考点: 一元一次方程的应用.
专题: 销售问题.
分析: 设进价为x,则依题意:标价的9折出售,仍可获利10%,可列方程解得答案.
解答: 解:设进价为x,
则依题意可列方程:132×90%﹣x=10%•x,
解得:x=108元;
故选C.
点评: 本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.
8.2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()
A. 30x﹣8=31x+26 B. 30x+8=31x+26 C. 30x﹣8=31x﹣26 D. 30x+8=31x﹣26
考点: 由实际问题抽象出一元一次方程.
专题: 应用题.
分析: 应根据实际人数不变可列方程,解出即可得出答案
解答: 解:由题意得:30x+8=31x﹣26,
故选D.
点评: 列方程解应用题的关键是找出题目中的相等关系.
9.下列四个生活、生产现象:
①用两个钉子就可以把木条固定在墙上;
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;
③从A地到B地架设电线,总是尽可能沿着线段AB架设;
④把弯曲的公路改直,就能缩短路程,
其中可用公理“两点之间,线段最短”来解释的现象有()
A. ①② B. ①③ C. ②④ D. ③④
考点: 线段的性质:两点之间线段最短.
专题: 应用题.
分析: 由题意,认真分析题干,用数学知识解释生活中的现象.
解答: 解:①②现象可以用两点可以确定一条直线来解释;
③④现象可以用两点之间,线段最短来解释.
故选D.
点评: 本题主要考查两点之间线段最短和两点确定一条直线的性质.
10.观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律 ,得出的第10个单项式是()
A. ﹣29x10 B. 29x10 C. ﹣29x9 D. 29x9
考点: 单项式.
专题: 规律型.
分析: 通过观察题意可得:n为奇数时,单项式为负数.x的指数为n时,2的指数为(n﹣1).由此可解出本题.
解答: 解:依题意得:(1)n为奇数,单项式为:﹣2(n﹣1)xn;
(2)n为偶数时,单项式为:2(n﹣1)xn.
综合(1)、(2),本数列的通式为:2n﹣1•(﹣x)n,
∴第10个单项式为:29x10.
故选:B.
点评: 确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.
二、填空题(每小题3分,共15分)
11.若3xm+5y与x3y是同类项,则m=﹣2.
考点: 同类项;解一元一次方程.
分析: 根据同类项的定义(所含有的字母相同,并且相同字母的指数也相同的项叫同类项)可得:m+5=3,解方程即可求得m的值.
解答: 解:因为3xm+5y与x3y是同类项,
所以m+5=3,
所以m=﹣2.
点评: 判断两个项是不是同类 项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.
12.如图,从A地到B地共有五条路,你应选择第③条路,因为两点之间,线段最短.
考点: 线段的性质:两点之间线段最短.
分析: 根据连接两点的所有线中,直线段最短解答.
解答: 解:根据图形,应选择第(3)条路,因为两点之间,线段最短.
点评: 此题考查知识点两点之间,线段最短.
13.若x,y互为相反数,a、b互为倒数,则代数式 的值为﹣2.
考点: 代数式求值;相反数;倒数.
分析: 根据互为相反数的两个数的和等于0可得x+y=0,互为倒数的两个数的积等于1可得ab=1,然后代入代数式进行计算即可得解.
解答: 解:∵x,y互为相反数,
∴x+y=0,
∵a、b互为倒数,
∴ab=1,
所以,3x+3y﹣ =3×0﹣ =﹣2.
故答案为:﹣2.
点评: 本题考查了代数式求值,相反数的定义,倒数的定义,是基础题,熟记概念是解题的关键.
14.AB=4cm,BC=3cm,如果O是线段AC的中点.线段OB的长度为0.5cm.
考点: 两点间的距离.
分析: 先根据O是线段AC的中点求出OC的长度,再根据OB=OC﹣BC即可得出结论.
解答: 解:∵AB=4cm,BC=3cm,如果O是线段AC的中点,
∴OC= (AB+BC)= ×(4+3)= ,
∴OB=OC﹣BC=3﹣ =0.5cm.
故答案为:0.5cm.
点评: 本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
15.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,则∠AOD=100°.
考点: 角平分线的定义.
专题: 计算题.
分析: 先根据角平分线的定义得到∠COD= ∠BOC=25°,然后根据∠AOD=∠AOC+∠COD进行计算.
解答: 解:∵OD平分∠BOC,
∴∠COD= ∠BOC= ×50°=25°,
∴∠AOD=∠AOC+∠COD=75°+25°=100°.
故答案为100°.
点评: 本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
三、解答题(共55分)
16.(6 分)(2014秋•济宁期末)计算:
(1)
(2) .
考点: 有理数的混合运算.
专题: 计算题.
分析: (1)原式利用乘法分配律计算即可得到结果;
(2)原式先计算乘方运算,以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.
解答: 解:(1)原式=3+1﹣27+6
=﹣17;
(2)原式=﹣1﹣ × ×(2﹣9)
=﹣1+
= .
点评: 此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.
17.先化简,后求值.
(1) ,其中 .
(2)3(3a2﹣2b)﹣2(5a2﹣3b),其中a=﹣3,b=﹣1.
考点: 整式的加减—化简求值.
专题: 计算题.
分析: (1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;
(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.
解答: 解:(1)原式= x﹣2x+ y2﹣ x+ y2=﹣3x+y2,
当x=﹣2,y= 时,原式=6 ;
(2)原式=9a2﹣6b﹣10a2+6b=﹣a2,
当a=﹣3时,原式=﹣9.
点评: 此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
18.解方程或求值.
(1)1﹣4x=2(x﹣1)
(2) ﹣1=
(3)已知 与 互为相反数,求 的值.
考点: 解一元一次方程.
分析: (1)(2)按照解一元一次方程的步骤与方法求得未知数的数值即可;
(3)由 与 互为相反数,得出=0,解方程求得y的数值,进一步代入求得答案即可.
解答: (1)1﹣4x=2(x﹣1)
解:1﹣4x=2x﹣2
﹣4x﹣2x=﹣2﹣1
﹣6x=﹣3
x= ;
(2) ﹣1=
解:3(y+1)﹣12=2(2y+1)
3y+3﹣12=4y+2
3y﹣4y=2﹣3+12
﹣y=11
y=﹣11;
(3)解:=0,
4(4y+5)﹣12﹣3(5y+2)=0
16y﹣15y=﹣20+12+6
y=﹣2,
把y=﹣2代入 =2.
点评: 此题考查解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项,合并同类项,系数化为1.
19.请你在答题卷相应的位置上画出下面几何体的三视图.
考点: 作图-三视图.
专题: 作图题.
分析: 主视图从左往右3列正方形的个数依次为1,2,1;左视图3列正方形的个数依次为2,1,1.俯视图从左往右3列正方形的个数依次为1,3,2.
解答: 解:作图如下:
点评: 考查三视图的画法;用到的知识点为:三视图分别是从物体正面,左面,上面看得到的平面图形.
20.如图,∠AOB=120°,OD平分∠BOC,OE平分∠AOC.
①求∠EOD的度数.
②若∠BOC=90°,求 ∠AOE的度数.
考点: 角平分线的定义.
分析: (1)根据OD平分∠BOC,OE平分∠AOC可知∠DOE=∠DOC+∠EOC= (∠BOC+∠AOC)= ∠AOB,由此即可得出结论;
(2)先根据∠BOC=90°求出∠AOC的度数,再根据角平分线的定义即可得出结论.
解答: 解:(1)∵∠AOB=120°,OD平分∠BOC,OE平分∠AOC,
∴∠EOD=∠DOC+∠EOC= (∠BOC+∠AOC)= ∠AOB= ×120°=60°;
(2)∵∠AOB=120°,∠BOC=90°,
∴∠AOC=120°﹣90°=30°,
∵OE平分∠AOC,
∴∠AOE= ∠AOC= ×30°=15°.
点评: 本题考查的是角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
21.有一批零件加工任务,甲单独做40小时完成,乙单独做30小时完成,甲做了几小时后另有任务,剩下的任务由乙单独完成,乙比甲多做了2小时,求甲做了几小时?
考点: 一元一次方程的应用.
分析: 设甲做了x小时,根据题意得等量关系:甲x小时的工作量+乙(x+2)小时的工作量=1,再根据等量关系列出方程即可.
解答: 解:设甲做了x小时,根据题意得,
,
解这个方程得x=16,
答:甲做了16小时.
点评: 此题主要 考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
22.已知:点A、B、C在一条直线上,线段AB=6cm,线段BC=4cm,若M,N分别为线段AB、BC的中点,求MN的长.
考点: 两点间的距离.
分析: 本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.
解答: 解:①如图:
∵M为AB的中点,AB=6cm,
∴MB= AB=3cm,
∵N为BC在中点,AB=4cm,
∴NB= BC=2cm,
∴MN=MB+NB=5cm.
②如图:
∵M为AB的中点,AB=6cm,
∴MB= AB=3cm,
∵N为BC的中点,AB=4cm,
∴NB= BC=2cm,
∴MN=MB﹣NB=1cm.
综上所述,MN的长为5cm或1cm…(7分)
点评: 考查了两点间的距离,由于B的位置有两种情况,所以本题MN的值就有两种情况,做这类题时学生一定要思维细密.
23.问题解决:
一张长方形桌子可坐6人,按如图方式将桌子拼在一起.
(1)2张桌子拼在一起可坐8人,3张桌子拼在一起可坐10人,…n张桌子拼在一起可坐2n+4人.
(2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐112人.
考点: 规律型:图形的变化类.
专题: 规律型.
分析: (1)根据所给的图,正确数出即可.在数的过程中,能够发现多一张桌子多2个人,根据这一规律用字母表示即可;
(2)结合(1)中的规律,进行表示出代数式,然后代值计算.
解答: 解:(1)2张桌子拼在一起可坐2×2+4=8人,3张桌子拼在一起可坐2×3+4=10人,那么n张桌子拼在一起可坐(4+2n)人;
(2)因为5张桌子拼在一起,40张可拼40÷5=8张大桌子,再利用字母公式,得出40张大桌子共坐8×(4+2×5 )=112人.
点评: 此类题一定要结合图形发现规律:多一张桌子多2个人.把这一规律运用字母表示出来即可.
24.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:
李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”
小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”
根据以上对话,解答下列问题:
(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?
(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元 ?
考点: 二元一次方程组的应用.
专题: 阅读型;方案型.
分析: (1)根据题目给出的条件得出的等量关系是:60座客车每辆每天的租金﹣45座客车每辆每天的租金=200元,4辆60座的一天的租金+2辆45座的一天的租金=5000元;由此可列出方程组求解;
(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.
解答: 解:(1)设平安公司60座和45座客车每天每辆的租金分别为x元,y元.
由题意列方程组
解得
答:平安公司60座和45座客车每天每辆的租金分别为900元,700元;
(2)九年级师生共需租金:5×900+1×700=5200(元)
答:共需资金5200元.
点评: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:60座客车每辆每天的租金﹣45座客车每辆每天的租金=200元,4辆60座的一天的租金+2辆45座的一天的租金=5000元;列出方程组,再求解.
一、正确选择.(本大题10个小题,每小题2分,共20分)
1、在-11,1.2,-2,0,-(-2)中,负数的个数有()
A.2个B.3个C.4个D.5个
2、数轴上表示-的点到原点的距离是()
A.B.-C.-2D.2
3、如果a表示有理数,那么下列说法中正确的是()
A.+a和-(-a)互为相反数B.+a和-a一定不相等
C.-a一定是负数D.-(+a)和+(-a)一定相等
4、若|a|=3,|b|=2,且a+b>0,那么a-b的值是()
A.5或1B.1或-1C.5或-5D.-5或-1
5、单项式-3πxy2z3的系数是()
A.-πB.-1C.-3πD.-3
6、下列方程中,是一元一次方程的是()
A.x2-4x=3B.3x-1=C.x+2y=1D.xy-3=5
7、若关于x的方程2x+a-4=0的解是x=-2,返喊则a的值等于()
A.-8B.0C.2D.8
8、如图,直角三角形绕直线l旋转一周,得到的立体图形是()
9、汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()
A.点动成线B.线动成面C.面动成体D.以上答案都不对
10、点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()
A.AC=BCB.AC+BC=ABC.AB=2ACD.BC=AB
二、准确填空.(本大题10个小题,每小题3分,共30分)
11、比较两数的大小:________(填“<”,“>”,“=”)
12、用科学记数法表示:3080000=.
13、多项式x2-2x+3是_______次________项式.
14、若单项式2xnym-n与单项式3x3y2n的和是5xny2n,则m=,n=.
15、当x=时,3x+4与4x+6的值相等.
16、如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的
两个长条的面散碧积相等.问这个正方形的边长应
为多少厘米?设正方形边长为xcm,则可列
方程为.
17、若a、b、c在数轴上的位置如图,
则│a│-│b-c│+│c│=.
18、8点55分时,钟表上时针与分针的所成的角是.
19、若一个角的补角是这个角2倍,则这个角的度数为度.
20、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内的不同6个点最多可确定条直线.
三、解答题.(本大题7个小题,共70分)
21、(10分)计算
(1)(-1)5×{[4÷(-4)-冲世举1×(-0.4)]÷(-)-2}
(2)-22×(-5)+16÷(-2)3-│-4×5│+(-0.625)2
22、(10分)先化简,再求值:
(1)3a2b-[2ab2-2(-a2b+4ab2)]-5ab2,其中a=-2,b=.
(2)(2x2-2y2)-3(x2y2+x)+3(x2y2+y),其中x=-1,y=2.
23、(10分)解方程
(1)2x+5=3(x-1)
(2)
24、(10分)某检修站,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.
(1)分别计算收工时,甲、乙两组各在A地的哪一边,分别距A地多远?
(2)若每千米汽车耗油a升,求出发到收工时两组各耗油多少升?
25、(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?
26、(10分)如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.
27、(10分)观察下列各式:
13+23=1+8=9,而(1+2)2=9,所以13+23=(1+2)2;
13+23+33=36,而(1+2+3)2=36,所以13+23+33=(1+2+3)2;
13+23+33+43=100,而(1+2+3+4)2=100,
所以13+23+33+43=(1+2+3+4)2;
所以13+23+33+43+53=()2=.
根据以上规律填空:
(1)13+23+33+…+n3=()2=[]2.
(2)猜想:113+123+133+143+153=.
七年级数学试题参考答案(人教版)
一、正确选择.
1、A2、A3、D4、A5、C6、B7、D8、C9、B10、B
二、准确填空.
11、>12、3.08×10613、二,三14、9,315、-216、4x=5(x-4)17、b-a18、62.5°19、6020、15
三、解答题.
21、(10分)解:(1)0(2)-2
22、(10分)(1)解:原式=3a2b-2ab2-2a2b+8ab2-5ab2=a2b+ab2,
当a=-2,b=时,原式=2-=.
(2)解:原式=2x2-2y2-3x2y2-3x+3x2y2+3y=2x2-2y2-3x+3y,
当x=-1,y=2时,原式=2-8+3+6=3.
23、(10分)解:(1)x=8;(2)x=
24、(10分)解:(1)因为(+15)+(-2)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-5)+(+6)=39.所以收工时,甲组在A地的东边,且距A地39千米。
一、选择题(每题3分,共36分)
1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )
A.1个 B.2个 C.3个 D.4个
2.下列命题中,正确的是( )
①相反数等于本身的数只有0; ②倒数等于本身的数只有1;
③平袭闹方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;
A.只有③ B. ①和② C.只有① D. ③和④
3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天衫源阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )
A.437℃ B.183℃ C.-437℃ D.-183℃
4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )
A.5.475*10^11 B. 5.475*10^10
C. 0.547*10^11 D. 5.475*10^8
5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )
A.这两个加数的符号都是正的 B.这两个加数的符号都是负的
C.这两个加数的符号不能相同 D.这两个加数的符号不能确定
7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )
A.1个 B.2个 C.3个 D.4个
8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。
2008-2009学年度第一学期七年级期末数学试卷
(考试时间为100分钟,试卷满分为100分)
班级__________ 学号___________ 姓名___________ 分数____________
一、选择题(每题3分,共36分)
1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )
A.1个 B.2个 C.3个 D.4个
2.下列命题中,正确的是( )
①相反数等于本身的数只有0; ②倒数等于本身的数只有1;
③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;
A.只有③ B. ①和② C.只兆数清有① D. ③和④
3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )
A.437℃ B.183℃ C.-437℃ D.-183℃
4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )
A.5.475*10^11 B. 5.475*10^10
C. 0.547*10^11 D. 5.475*10^8
5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )
A.这两个加数的符号都是正的 B.这两个加数的符号都是负的
C.这两个加数的符号不能相同 D.这两个加数的符号不能确定
7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )
A.1个 B.2个 C.3个 D.4个
8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。
一.选择题(共10小题,每题3分)
1.(2014秋•吉林校级期末)如果向南走10m记作+10m,那么﹣50m表示(森孝)
A.向东走50mB.向西走50mC.向南走50mD.向北走50m
考点:正数和负数.
分析:根据正数和负数表示相反意义的量,向南记为正,可得向北的表示方法.
解答:解:向南走10m记作+10m,那么﹣50m表示向北走50米,
故选:D.
点评:本题考查了正数和负数,相反意义的量用正数和负数表示.
2.(2014秋•吉林校级期末)点A在数轴上表示+1,把点A沿数轴向左平移4个单位到点B,则点B所表示的数是()
A.﹣4B.﹣扰裤3C.5D.﹣3或5
考点:数轴.
分析:用1减去平移的单位即为点B所表示的数.
解答:解:1﹣4=﹣3.
故选B.
点评:本题考查的是数轴,熟知数轴上的点平移的规律是“左减右加”是解答此题的关键.
3.(2014秋•吉林校级期末)下列语句:
①﹣5是相反数;
②﹣5与+3互为相反数;
③﹣5是5的相反数;
④﹣3和+3互为相反数;
⑤0的相反数是0中,正确的是()
A.①②B.②③⑤C.①④⑤D.③④⑤
考点:相反数.
分析:根据相反数的定义对各小题分析判断即可得解.
解答:解:①﹣5是相反数,错误;
②﹣5与+3互为相反数,错误;
③﹣5是5的相反数,正确;
④﹣3和+3互为相反数,正确;
⑤0的相反数是0,正确,
综上所述,正确的有③④⑤.
故选D.
点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.
4.(2014秋•吉林校级期末)已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是()
A.0B.1C.4D.9
考点:非负数的性质:绝对值;非负数的性质:偶次方;代数式求值.
分析:由|x+1|+(x﹣y+3)2=0,结合非负数的性质,可以求出x、y的值,进而求出(x+y)2的值.
解答:解:∵|x+1|+(x﹣y+3)2=0,
∴ ,
解得x=﹣1,y=2,
∴(x+y)2=1.
故选B.
点评:本题主要考查代数式的求值和非负数的性质.
5.(2014秋•吉林校级期末)以下哪个数在﹣2和1之间()
A.﹣3B.3C.2D.0
考点:有理数大小比较.
专题:计算题.
分析:利用数轴,根据有理数大小的比较法则进行比较.
解答:解:从数轴上看﹣3在﹣2的左侧,2、3在﹣2的右侧,只有0在﹣2和1之间.
故选D.
点评:本题考查了有理数大小比较,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.
6.(2014秋•吉林校级期末)﹣7,﹣12,2三个数的绝对值的和是()
A.﹣17B.﹣7C.7D.21
考点:有理数的加法;绝对值.
分析:先分别求出三个数的绝对值,再求出绝对值的和即可.
解答:解:∵|﹣7|=7,|﹣12|=12,|2|=2,
∴这三个数的绝对值的和=7+12+2=21.
故选D.
点评:此题考查了有理数加法法则的简单应用及绝对值的知识,属于基础题.
7.(2014秋•吉林校级期末)若一个有理数与它的相反数的差是一个负数,则()
A.这个有理数一定是负数
B.这个有理数一定是正数
C.这个有理数可以为正数、负数
D.这个有理数为零
考点:有理数的减法;相反数.
分析:根据减去一个数等于加上这个数的相反数,负数减正数等于负数加负数,可得答案.
解答:解:若一个有理数与它的相反数的差是一个负数,缓春简这个有理数一定是负数,
故选:A.
点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数,注意负数减正数等于负数加负数.
8.(2014秋•吉林校级期末)式子﹣5﹣(﹣3)+(+6)﹣(﹣2)写成和的形式是()
A.﹣5+(+3)+(+6)+(﹣2)B.﹣5+(﹣3)+(+6)+(+2)C.(﹣5)+(+3)+(+6)+(+2)D.(﹣5)+(+3)+(﹣6)+(+2)
考点:有理数的加减混合运算.
专题:计算题.
分析:利用减法法则计算即可得到结果.
解答:解:原式=(﹣5)+(+3)+(+6)+(+2).
故选C
点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.
9.(2014秋•吉林校级期末)下列说法中正确的是()
A.积比每一个因数都大
B.两数相乘,如果积为0,则这两个因数异号
C.两数相乘,如果积为0,则这两个因数至少一个为0
D.两数相乘,如果积为负数,则这两个因数都为正数
考点:有理数的乘法.
分析:根据有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同零相乘都得零.逐一分析探讨得出结论即可.
解答:解:A、﹣3×2=﹣6,积比每一个因数都小,此选项错误;
B、两数相乘,如果积为0,则这两个因数至少有一个为0,此选项错误;
C、两数相乘,如果积为0,则这两个因数至少一个为0,此选项正确;
D、两数相乘,如果积为负数,则必须有一个为负数,此选项错误.
故选:C.
点评:此题考查有理数的乘法法则,加深对乘法法则的理解和掌握是解决问题的关键.
10.(2014秋•吉林校级期末)已知a,b互为相反数,且a≠0,则()
A. >0B. =0C. =1D. =﹣1
考点:有理数的除法;相反数.
专题:计算题.
分析:利用互为相反数两数(非0)之商为﹣1即可得到结果.
解答:解:∵a,b互为相反数,且a≠0,
∴ =﹣1.
故选D
点评:此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.
二.填空题(共8小题,每题3分)
11.(2014秋•吉林校级期末)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是0.
考点:有理数的乘方.
分析:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.
解答:解:(﹣1)2n+1+(﹣1)2n=﹣1+1
=0.
故答案为:0.
点评:此题主要考查有理数的乘方,用到的知识点是:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.
12.(2014秋•吉林校级期末)你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.请问这样第10次可拉出210根面条.
考点:有理数的乘方.
专题:规律型.
分析:根据题意归纳总结得到第n次捏合,可拉出2n根面条,即可得到结果.
解答:解:第一次捏合,可拉出21根面条;
第二次捏合,可拉出22根面条;
以此类推,第n次捏合,可拉出2n根面条,
则样第10次可拉出210根面条.
故答案为:210.
点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.
13.(2014秋•吉林校级期末)如果|x﹣2|+(y+ )2=0,那么x+y=1.
考点:非负数的性质:偶次方;非负数的性质:绝对值.
分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
解答:解:根据题意得,x﹣2=0,y+ =0,
解得x=2,y=﹣1,
所以,x+y=2+(﹣1)=1.
故答案为:1.
点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
14.(2015•芦溪县模拟)去年大连市接待入境旅游者约876000人,这个数可用科学记数法表示为8.76×105.
考点:科学记数法—表示较大的数.
专题:应用题.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
解答:解:将876 000用科学记数法表示为8.76×105.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15.(2014秋•吉林校级期末) .
考点:有理数的混合运算.
分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
解答:解:
=﹣64+3×4﹣6÷
=﹣64+12﹣54
=﹣﹣106.
点评:本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.
16.(2014秋•吉林校级期末)将有理数0.23456精确到百分位的结果是0.23.
考点:近似数和有效数字.
分析:把千分位上的数字4进行四舍五入即可.
解答:解:0.23456精确到百分位的结果是0.23;
故答案为:0.23.
点评:本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
17.(2014秋•吉林校级期末)某企业由于改进技术,三月份的产值比二月份翻了一番,四月份因清明小长假等因素的影响,产值比三月份减少20%,则四月份的产值比二月份增加了60%.
考点:列代数式.
分析:首先表示出三月份与三四月份的销售额,据此即可求解.
解答:解:设二月份的销售额是x,则三月份的销售额是2x,
四月份的销售额是:2(1﹣20%)=1.6x,
则四月份比二月份减增加:1.6x﹣x=0.6x,
即 ×100%=60%.
故答案为:60%.
点评:本题考查了列代数式,涉及了增长率的知识,能够根据增长率分别表示出各月的产量是解题的关键.
18.(2014•齐齐哈尔)已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9.
考点:代数式求值.
专题:整体思想.
分析:把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.
解答:解:∵x2﹣2x=5,
∴2x2﹣4x﹣1
=2(x2﹣2x)﹣1,
=2×5﹣1,
=10﹣1,
=9.
故答案为:9.
点评:本题考查了代数式求值,整体思想的利用是解题的关键.
三.解答题(共8小题)
19.(2014秋•吉林校级期末)(1)(﹣ + ﹣ )×12+(﹣1)2011
(2)100÷(﹣2)2﹣(﹣2)÷(﹣ )
考点:有理数的混合运算.
专题:计算题.
分析:(1)先利用乘法的分配律和乘方的意义得到原式=﹣ ×12+ ×12﹣ ×12﹣1=﹣9+2﹣ ﹣1,然后进行乘法运算,再进行加减运算;
(2)先算乘方,再进行乘除运算.
解答:解:(1)原式=﹣ ×12+ ×12﹣ ×12﹣1
=﹣9+2﹣ ﹣1
=﹣8﹣
=﹣ ;
(2)原式=100÷4﹣(﹣2)×(﹣2)
=25﹣4
=21.
点评:本题考查了有理数的混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
20.(2009•裕华区二模)已知代数式3x2﹣4x+6值为9,则x2﹣ +6的值.
考点:代数式求值.
专题:整体思想.
分析:先根据题意列出等式3x2﹣4x+6=9,求得3x2﹣4x的值,然后求得x2﹣ +6的值.
解答:解:∵代数式3x2﹣4x+6值为9,∴3x2﹣4x+6=9,∴3x2﹣4x=3,
∴x2﹣ =1,∴x2﹣ +6=1+6=7.
点评:本题考查了求代数式的值,找出未知与已知的关系,然后运用整体代入的思想.
21.(2014秋•吉林校级期末)1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?
考点:有理数的乘方.
专题:计算题.
分析:根据题意列出算式,计算即可得到结果.
解答:解:根据题意得:( )7×1= (米),
则第7次截后剩下的小棒长 米.
点评:此题考查了有理数的乘方,弄清题中的规律是解本题的关键.
22.(2014秋•吉林校级期末)要是关于x、y的多项式my3+3nx2y+2y3﹣x2y+y不含三次项,求2m+3n的值.
考点:多项式.
分析:先合并同类项,根据已知得出m+2=0,3n﹣1=0,求出m、n的值后代入进行计算即可.
解答:解:my3+3nx2y+2y3﹣x2y+y=(m+2)y3+(3n﹣1)x2y+y,
∵关于x、y的多项式my3+3nx2y+2y3﹣x2y+y不含三次项,
∴m+2=0,3n﹣1=0,
∴m=﹣2,n= ,
∴2m+3n
=2×(﹣2)+3×
=﹣3.
点评:本题考查了合并同类项和解一元一次方程的应用,关键是求出m、n的值.
23.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)an互为相反数,求 的值.
考点:合并同类项.
分析:运用相反数的定义得(﹣3a)3+(2m﹣5)an=0,求出m,a,再代入求值.
解答:解:∵(﹣3a)3与(2m﹣5)an互为相反数
∴(﹣3a)3+(2m﹣5)an=0,
∴2m﹣5=27,n=3,解得m=16,n=3,
∴ = =5.
点评:本题主要考查了合并同类项,解题的关键是确定(﹣3a)3+(2m﹣5)an=0,
24.(2014秋•吉林校级期末)先化简,后求值 ,其中 .
考点:整式的加减—化简求值.
专题:计算题.
分析:先去括号,再合并同类项,再将 代入化简后的整式即可求解.
解答:解:原式=3x2﹣2x2﹣4+4x2﹣2
=5x2﹣6,
当 时,原式=5×(﹣ )2= .
点评:本题考查了整式的加减﹣﹣化简求值,正确进行合并同类项是解题的关键.
25.(2013秋•高新区期末)先化简,再求值: ,其中a,b满足|a﹣1|+(b+2)2=0.
考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.
专题:计算题.
分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.
解答:解:原式= a﹣2a+ b2﹣ a+ b2
=﹣3a+b2,
∵|a﹣1|+(b+2)2=0,∴a﹣1=0,b+2=0,即a=1,b=﹣2,
则原式=﹣3+4=1.
点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
26.(2014秋•吉林校级期末)福州市的出租车收费标准是:乘车里程不超过3千米的收费是起步价加出租汽车燃油附加费共8元,超过3千米的除了照收8元以外超过部分每千米加收1.5元;
(1)若某人乘坐了15千米,应支付多少元?
(2)若某人乘坐了x(x>3)千米,用代数式表示他应支付的费用.
考点:列代数式.
分析:路程超过3千米需付费=8+超过3千米的付费.
(1)因为超过3千米的除了照收8元以外超过部分每千米加收1.5元,所以乘坐15千米,应付费[8+(15﹣3)×1.5]元;
(2)因为x>3,所以应付的费用为8+(x﹣3)×1.5.
解答:解:(1)8+(15﹣3)×1.5=26(元).
(2)8+(x﹣3)×1.5=1.5x+3.5(元).
点评:解决问题的关键是读懂题意,找到所求的量的等量关系.
以上就是初一数学上册期末试卷的全部内容,分析:根据度分秒的换算,大的单位化成小的单位乘以进率,可得答案. 解答:解:30.26°=30°15′36″, 故答案为:30°15′36″. 点评:本题考查了度分秒的换算,把不到一度的化成分,不到一分的化成秒. 13.观察下列等式: 1、。