当前位置: 首页 > 所有学科 > 数学

数学家祖冲之,数学家祖冲之的故事

  • 数学
  • 2024-01-19

数学家祖冲之?为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”。 祖冲之通过艰苦的努力,他在世界数学史上第一次将圆周率(π)值计算到小数点后七位,即3.1415926到3.1415927之间。那么,数学家祖冲之?一起来了解一下吧。

祖冲之简短小故事30字

主要成就

天文历法《大明历》

圆周率推算到小数点后七位

水碓磨、指南车、千里船、定时器

代表作品

《缀术》《述异记》《安边论》

祖冲之与圆周率的故事

祖冲之(公元429~500),字文远,范阳遒县(今河北省涞水县北)人,生活于南朝的宋、齐之间,是我国古代杰出的数学家、天文学家和机械发明家.祖冲之卓越的数学成就,在世界数学史上闪耀着光芒,是中华民族的骄傲.南朝时期,经济繁荣,文化发达,因而也对科学技术进步提出较为迫切的要求.这为祖冲之的科学成就创造了良好的社会基础.祖氏家族世代掌管历法.祖冲之从小受到很好的家庭教育,对于自然科学、文学和哲学都有浓厚的兴趣.他尤其酷爱数学、天文学、机械制造,苦心钻研.当时宋朝政府中有一个研究学术的机关,叫华林学省,祖冲之青年时期就被吸收在这里从事研究工作.祖冲之一面研究继承家学,一面学习我国古代及外国传入的科学成就.他博览群书,兼学百家,为后来的科研工作奠定了深厚的基础.

祖冲之小时候酷爱数学和天文,学习非常刻苦,他“专攻数术,搜炼古今”,把从古代到6世纪所保存的观测记录和有关文献,几乎全部搜集来作为参考.他对圆周率的研究开始得很早,后来达到了如醉如痴的地步.相传,有一天,夜已经很深了,他翻来覆去睡不着,《周髀算经》上说,圆周的长是直径的3倍,这个说法对吗?天还没亮,他就把妈妈叫醒,要了一根绳子,跑到大路上,等候着马车.突然,来了一辆马车,祖冲之喜出望外,要求量马车的轮子,经过再三测量,他总觉得圆周长大于直径的3倍,究竟大多少?这个问题一直盘旋在他的脑子里,直到40多岁,才解开了这个谜.

祖冲之最突出的成就是对圆周率的精确推算.现在都知道,圆周率是圆的周长与直径的比.这是一个常数,一般用希腊字母π表示.已经证明,π不但是一个无理数,而且是一个超越数,就是说,既不能用有限的数字精确地表示它,也不能用有限的代数式精确地表示它.祖冲之对圆周率的研究,包含在与他儿子祖恒合著的《缀术》中.

对祖冲之的历史评价

祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。

公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。

祖冲之是哪朝人

祖冲之把圆周率精确到小数点以后的第七位数字及3.14 1592和3.1415927之间。这项成果领先世界近千年。

祖冲之简介及主要事迹100字

祖冲之(ZǔChōngzhī ,公元429年—公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.1415926(朒数)和3.1415927(盈数)之间,相当于精确到小数第7位,成为当时世界上最先进的成就。这一纪录直到15世纪才由阿拉伯数学家卡西打破。祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。

以上就是数学家祖冲之的全部内容,圆周率这一巨大的光环,让很多人忽视了祖冲之的博学多才。他在南京求学、任教、做科研期间,在多个领域都取得了不可忽视的成就。最值得一提的,是他在天文历法方面的贡献。这主要是指祖冲之于公元462年编制成功的《大明历》。

猜你喜欢