高二数学数列?2、高二数学数列的分类 (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,那么,高二数学数列?一起来了解一下吧。
【 #高二#导语】高二年级有两大特点:一、教学进度快。一年要完成二年的课程。二、高一的新鲜过了,距离高考尚远,最容易玩的疯、走的远的时候。导致:心理上的迷茫期,学业上进的缓慢期,自我约束的松散期,易误入歧路,大浪淘沙的筛选期。因此,直面高二的挑战,认清高二,认清高二的自己,认清高二的任务,显得意义十分重大而迫切。 无 高二频道为你整理了《高二年级数学必修五等差数列知识点归纳》,希望对你的学习有所帮助!
【一】
1.等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
高中数学课本中讲到,按一定次序排列的一列数称为数列。下面是我给大家带来的高二数学数列知识点总结,希望对你有帮助。
1、高二数学数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…。
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。
一、等差数列的有关概念:
1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d(n∈N*,d为常数).
2.等差中项:数列a,A,b成等差数列的充要条件是A=(a+b)/2,其中A叫做a,b的等差中项.
二、等差数列的有关公式
1.通项公式:an=a1+(n-1)d.
2.前n项和公式:Sn=na1+n(n-1)/2d+d=(a1+an)n/2.
三、等差数列的性质
1.若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq.
2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd.
3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d.
4.等差数列的增减性:d>0时为递增数列,且当a1<0时前n项和Sn有最小值.d<0 a1="">0时前n项和Sn有最大值.
5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和Sn=An2+Bn是{an}成等差数列的充要条件.
四、解题方法
1.与前n项和有关的三类问题
(1)知三求二:已知a1、d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想.
(2)Sn=d/2*n2+(a1-d/2)n=An2+Bn?d=2A.
(3)利用二次函数的图象确定Sn的最值时,最高点的`纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.
2.设元与解题的技巧
已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…;
若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元
等差数列的通项公式:an=a1+(n-1)d
等差中项:A=(a+b)/2
等差数列的前n项和:Sn=n(a1+a2)/2
或
Sn=na1+nd(n-1)/2
等比数列的通项公式:
an=a1乘q(n-1)次方
等比中项:
G平方=ab
等比数列的前n项和:
当q不=1时
:Sn=
a1(1-q的n次方)/1-q
或
Sn=a1-an乘q/1-q
当q=1时
Sn=na1
设a1为a/q,a2为a,a3为aq,
a1+a2+a3=7=a/q+a+aq
a1a2a3=8=a/q
*
a
*
aq=a^3
所以a=2,q=2
所以a1=1,a2=2,a3=4
等比通项an=a1*q^(n-1)=2^(n-1)
以上就是高二数学数列的全部内容,一般地,如果一个数列[1]从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。