高一数学知识点梳理?一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),那么,高一数学知识点梳理?一起来了解一下吧。
将高中数学的重点知识归纳总结,有利于提高自己的学习效率。下面是由我为大家整理的“高一数学必修一重点知识归纳总结”,仅供参考,欢迎大家阅读本文。
高一数学必修一知识点归纳1
一、集合有关概念
1.集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山;
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y};
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5};
(2)集合的表示方法:列举法与描述法。
非负整数集(即自然数集)记作:N;
正整数集:N_或N+;
整数集:Z;
有理数集:Q;
实数集:R。
1)列举法:{a,b,c……};
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2};
3)语言描述法:例:{不是直角三角形的三角形}。
高中以来,同学们的学习任务日益繁重,作为主科的数学更是,如何更有效的学习数学呢。以下是由我为大家整理的“高一数学知识点归纳总结”,仅供参考,欢迎大家阅读。
高一数学知识点归纳总结
一、集合
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
u注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR| x-3>2} ,{x| x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集 含有有限个元素的集合
(2)无限集 含有无限个元素的集合
(3)空集 不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:
有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
高一数学知识点有:
一、圆锥曲线的方程
1、椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)。
2、双曲线:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)。
3、抛物线:y2=±2px(p>0),x2=±2py(p>0)。
二、函数奇偶性
1、如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
2、如果对于函数定义域内的任意一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。
三、求函数值域的方法
1、直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数。
2、换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式。
四、二次函数的零点
1、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
高一数学知识点总结:
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x)。
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f的定义域由不等式a≤g(x)≤b解出即可;若已知f的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定。
3.函数图像
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
是你主动地适应环境,而不是环境适应你。因为你走向社会参加工作也得适应社会。下面是我给大家带来的高一数学必背重要知识点,以供大家参考!
高一数学必背重要知识点
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N_或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
以上就是高一数学知识点梳理的全部内容,2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);三、平面向量 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a。