当前位置: 首页 > 所有学科 > 数学

2017昌平二模数学中考,2017杨浦数学数学二模答案

  • 数学
  • 2023-05-17
目录
  • 2017数学二模
  • 2017年上海高考数学二模卷
  • 2017徐汇二模数学
  • 上海中考数学二模卷2017
  • 2017徐汇数学二模答案

  • 2017数学二模

    2011年北京市高级中等学校招生考试

    数 学 试 卷

    一、选择题 (本题共32分,每小题4分)

    1.的绝对值是()

    A. B. C. D.

    2. 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人。将665 575 306用科学记数法表示(保留三个有效数字)约为()

    A. B. C. D.

    3. 下列图形中,即是中心对称又是轴对称图形的是()

    A. 等边三角形 B. 平行四边形 C. 梯形 D. 矩形

    4. 如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若 , ,则 的值为()

    A. B. C. D.

    5. 北京今年6月某日部分区县的高气温如下表:

    区县 大兴 通州 平谷 顺义 怀柔 门头沟 延庆 昌平 密云 房山

    最高气温 32 32 30 32 30 32 29 32 30 32

    则这10个区县该日最高气温的人数和中位数裂首分别是()

    A. 32,32 B. 32,30

    C. 30,32 D. 32,31

    6. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没液旁有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为()

    A. B. C. D.

    7. 抛物线 的顶点坐标为()

    A. ( , ) B. ( , ) C. ( , ) D. ( , )

    8. 如图在Rt△ 中, , ,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E。设 , ,则下列图象中,能表示y与x的函数关系图象大致是()

    二、填空题 (本题共16分,每小题4分)

    9. 若分式 的值为0,则x的值等于________。

    10. 分解因式: ______________。

    11. 若右图是某几何体的表面展开图,则这个几何体是____________。

    12. 在右表中,我们把第i行第j列的数记为 (其中i,j都是不大于5的正整数),对于表中的每个数 ,规定如下:当 时, ;当 时, 。例如:当 , 时, 。按此规定, _____;表中的25个数中,共有_____个1;计算 的值为________。

    三、解答题 (本题共30分,每小题5 分)

    13. 计算: 。

    14. 解不等式: 。

    15. 已知 ,求代数式 的值。

    16. 如图,点A、B、C、D在同一条直线上,BE∥DF, , 。

    求证: 。

    17. 如图,在平面直角坐标系xOy中,一次函数 的图象与反比例函数 的图象的一个交点为A( , )。

    (1)求反比例函数 的解析式;

    (2)若P是坐标轴上一点,且满足 ,直接写出点P的坐标。

    18. 列方程或方程组解应用题:

    京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车。已知小王家距上班地点18千米。他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 。小王用自驾车方式上班平均每小时行驶多少千米?

    三、解答题 (本题共20分,每小题5 分)

    19. 如图,在△ABC, 中,D是BC的中点,DE⊥BC,CE∥AD,若 , ,求四边形ACEB的周长。

    20. 如图,在△ABC,闹源橡 ,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且 。

    (1)求证:直线BF是⊙O的切线;

    (2)若 , ,求BC和BF的长。

    21. 以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分。

    请根据以上信息解答下列问题:

    (1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)?

    (2)补全条形统计图;

    (3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关。如:一辆排量为1.6L的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨。于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示。

    排量(L) 小1.6 1.6 1.8 大于1.8

    数量(辆) 29 75 31 15

    如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?

    22. 阅读下面材料:

    小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O。若梯形ABCD的面积为1,试求以AC,BD, 的长度为三边长的三角形的面积。

    小伟是这样思考的:要想解决这个问题,首先应想办法移动这些

    分散的线段,构造一个三角形,再计算其面积即可。他先后尝试了

    翻折,旋转,平移的方法,发现通过平移可以解决这个问题。他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD, 的长度为三边长的三角形(如图2)。

    参考小伟同学的思考问题的方法,解决下列问题:

    如图3,△ABC的三条中线分别为AD,BE,CF。

    (1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边

    长的一个三角形(保留画图痕迹);

    (2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角

    形的面积等于_______。

    五、解答题 (本题共22分,第23题7分,第24题7分,第25题8分)

    23. 在平面直角坐标系xOy中,二次函数 的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C。

    (1)求点A的坐标;

    (2)当 时,求m的值;

    (3)已知一次函数 ,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数 的图象于N。若只有当 时,点M位于点N的上方,求这个一次函数的解析式。

    24. 在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

    (1)在图1中证明 ;

    (2)若 ,G是EF的中点(如图2),直接写出∠BDG的度数;

    (3)若 ,FG∥CE, ,分别连结DB、DG(如图3),求∠BDG的度数。

    25. 如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段)。已知A( , ),B( , ),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上。

    (1)求两条射线AE,BF所在直线的距离;

    (2)当一次函数 的图象与图形C恰好只有一个公共点时,写出b的取值范围;

    当一次函数 的图象与图形C恰好只有两个公共点时,写出b的取值范围;

    (3)已知□AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围。

    2011 年北京市高级中等学校招生考试数学试卷答案及评分参考

    阅卷须知:

    1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要

    过程正确写出即可。

    2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

    3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数。

    一、选择题 (本题共32分,每小题4分)

    题号 1 2 3 4 5 6 7 8

    答案 D C D B A B A B

    二、填空题 (本题共16分,每小题4分)

    题号 9 10 11 12

    答案 8 a(a5)2 圆柱 0 15 1

    三、解答题 (本题共30分,每小题5分)

    13. (本小题满分5分)

    [解] ( )12cos30 (2)0

    =22 3 1

    =2 3 +1

    =2 +3。

    14. (本小题满分5分)

    [解] 去括号,得4x-4>5x-6,

    移项,得4x-5x>4-6,

    合并,得-x>-2

    解得x<2,

    所以原不等式的解集是x<2。

    15. (本小题满分5分)

    [解] a(a+4b)-(a+2b)(a-2b)

    =a2+4ab-(a2-4b2)

    =4ab+4b2

    ∵ a2+2ab+b2=0,

    ∴ a+b=0,

    ∴ 原式=4b(a+b)=0。

    16. (小题满分5分)

    证明:∵ BE//DF,∴ ABE=D,

    在△ABE和△FDC中,ÐABE=ÐD,AB=FD,ÐA=ÐF,

    ∴ △ABE  △FDC,

    ∴ AE=FC。

    17. (本小题满分5分)

    [解] (1) ∵ 点A (-1,n)在一次函数y= -2x的图象上,

    ∴ n= -2(-1)=2。

    ∴ 点A的坐标为(-1,2)。

    ∵ 点A在反比例函数y= 的图象上,

    ∴ k= -2,

    ∴ 反比例函数的解析式为y= - 。

    (2) 点P的坐标为(-2,0)或(0,4)。

    18. (本小题满分5分)

    [解] 设小王用自驾车方式上班平均每小时行驶x千米,

    依题意,得 ,

    解得x=27,

    经检验,x=27是原方程的解,且符合题意。

    答:小王用自驾车方式上班平均每小时行驶27千米。

    四、解答题 (本题共20分,每小题5分)

    19. (本小题满分5分)

    [解] ∵ ÐACB=90,DEBC,

    ∴ AC//DE,又∵ CE//AD,

    ∴ 四边形ACED是平行四边形,

    ∴ DE=AC=2,

    在Rt△CDE中,由勾股定理得CD= =2 ,

    ∵ D是BC的中点,

    ∴ BC=2CD=4 .

    在Rt△ABC中,由勾股定理得AB= =2 ,

    ∵ D是BC的中点,DEBC,

    ∴ EB=EC=4,

    ∴ 四边形ACEB的周长=AC+CE+EB+BA=10+2 。

    20. (本小题满分5分)

    (1) 证明:连结AE. ∵ AB是圆O的直径,

    ∴ ÐAEB=90.∴Ð1+Ð2=90.

    ∵ AB=AC, ∴ Ð1= ÐCAB. ∵ÐCBF= ÐCAB.

    ∴ Ð1=ÐCBF,∴ ÐCBF+Ð2=90.

    ∵ 即ÐABF=90°. ∵ AB是圆O的直径,

    ∴ 直线BF是圆O的切线。

    (2) [解] 过点C作CGAB于点G,∵ sinÐCBF= ,Ð1=ÐCBF,∴ sinÐ1= ,

    ∵ ÐAEB=90°,AB=5, ∴BE=AB•sinÐ1= ,

    ∵ AB=AC,ÐAEB=90°, ∴ BC=2BE=2 ,

    在Rt△ABE中,由勾股定理得AE= =2 ,

    ∴ sinÐ2= ,cosÐ2= ,

    在Rt△CBG中,可求得GC=4,GB=2。

    ∴ AG=3, ∵ GC // BF,∴ △AGC ~ △ABF. ∴ ,∴ BF= = .

    21. (本小题满分5分)

    [解] (1) 146(119%)=173.74174(万辆).

    所以2008年北京市私人轿车拥有量约

    是174万辆.

    (2) 如右图.

    (3) 276 2.7=372.6(万吨).

    估计2010年北京市仅排量为1.6L

    的这类私人轿车的碳排放总量约为

    372.6(万吨).

    22. (本小题满分5分)

    [解] △BDE的面积等于1.

    (1) 如图.以AD、BE、CF的长度为三边长的一个三角形是

    △CFP.

    (2) 以AD、BE、CF的长度为三边长的三角形面积等于 .

    五、解答题 (本题共22分,第23题7分,第24题7分,第25题8分)

    23. (本小题满分7分)

    [解] (1) ∵ 点A、B是二次函数y=mx2(m3)x3 (m>0)的图象与x轴的交点,

    ∴ 令y=0,即mx2(m3)x3=0,解得x1= 1, x2= ,又∵ 点A在点B左侧且m>0,

    ∴ 点A的坐标为(1,0).

    (2) 由(1)可知点B的坐标为( ,0).

    ∵ 二次函数的图象与y轴交于点C,

    ∴ 点C的坐标为(0, 3).

    ∵ ABC=45,∴ =3,∴m=1。

    (3) 由(2)得,二次函数解析式为y=x22x3.依题意并结合图象

    可知,一次函数的图象与二次函数的图象交点的横坐标分别

    为2和2,由此可得交点坐标为(2,5)和(2, 3).

    将交点坐标分别代入一次函数解析式y=kxb中,

    得 2kb=5,且2kb= 3,解得k= 2,b=1,

    ∴ 一次函数的解析式为y= 2x1。

    24. (本小题满分7分)

    (1) 证明:如图1.

    ∵ AF平分BAD,∴BAF=DAF,

    ∵ 四边形ABCD是平行四边形,

    ∴ AD//BC,AB//CD。

    ∴ DAF=CEF,BAF=F,

    ∴ CEF=F,∴ CE=CF。

    (2) BDG=45°.

    (3) [解] 分别连结GB、GE、GC(如图2).

    ∵ AB//DC,ABC=120°,

    ∴ ECF=ABC=120°,

    ∵ FG //CE且FG=CE,

    ∴ 四边形CEGF是平行四边形.

    由(1)得CE=CF, ∴□•CEGF是菱形,

    ∴ EG=EC,GCF=GCE= ECF=60°.

    ∴ △ ECG是等边三角形.

    ∴ EG=CG…,

    GEC=EGC=60°,

    ∴GEC=GCF,

    ∴BEG=DCG…,

    由AD//BC及AF平分BAD可得BAE=AEB,

    ∴AB=BE.

    在□ ABCD中,AB=DC.

    ∴BE=DC…,

    由得△BEG  △DCG.

    ∴ BG=DG,1=2,

    ∴ BGD=13=23=EGC=60°.

    ∴ BDG= (180°BGD)=60°.

    25. (本小题满分8分)

    [解] (1) 分别连结AD、DB,则点D在直线AE上,

    如图1,

    ∵ 点D在以AB为直径的半圆上,

    ∴ ADB=90°,

    ∴ BDAD.

    在Rt△DOB中,由勾股定理得

    BD= = .

    ∵ AE//BF,两条射线AE、BF所在直线的距离为 .

    (2) 当一次函数y=xb的图象与图形C恰好只有一个公共点时,b的取值范围是

    b= 或1

    当一次函数y=xb的图象与图形C恰好只有两个公共点时,b的取值范围是

    1

    (3) 假设存在满足题意的□ AMPQ,根据点M的位置,分以下四种情况讨论:

     当点M在射线AE上时,如图2.

    ∵ A、M、P、Q四点按顺时针方向排列,

    ∴ 直线PQ必在直线AM的上方,

    ∴ P、Q两点都在AD弧上,且不与A、D

    重合. ∴ 0

    ∵ AM//PQ且AM=PQ,

    ∴ 0

     当点M在AD弧(不包括点D)上时,如图3.

    ∵ A、M、P、Q四点按顺时针方向排列,

    ∴ 直线PQ必在直线AM的下方。

    此时,不存在满足题意的平行四边形。

     当点M在DB弧上时,设DB弧的中点为R,

    则OR//BF.

    (i) 当点M在DR弧(不包括点R)上时,如图4.

    过点M作OR的垂线交DB弧于点O,

    垂足为点S,可得S是MQ的中点.

    连结AS并延长交直线BF于点P.

    ∵ O为AB的中点,可证S为AP的中点.

    ∴ 四边形AMPQ为满足题意的平行四边形.

    ∴ 0x< .

    (ii) 当点M在RB上时,如图5.

    直线PQ必在直线AM的下方.

    此时,不存在满足题意的平行四边形.

     当点M在射线BF(不包括点B)上时,如图6.

    直线PQ必在直线AM的下方.

    此时,不存在满足题意的平行四边形.

    综上,点M的横坐标x的取值范围是2

    2017年上海高考数学二模卷

    连接AC交BD于G,早蚂旅AE交DF于H.

    ∵AB平行且等于ED,AF平行且陆凳等于CD,

    ∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,

    ∴AE=BD,AC=FD,

    ∵FD⊥BD,

    ∴∠GDH=90°,

    ∴四边形AHDG是矩形,

    ∴AH=DG

    ∵EH=AE-AH,BG=BD-DG

    ∴EH=BG.

    ∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD?BD=3×4=12cm2

    故答案为:物正12

    2017徐汇二模数学

    (Ⅰ)∵(0.005+0.01+a+0.03+0.035)×10=1,…(1分)

    所以a=0.02.…(2分)

    (Ⅱ)依题意可知,

    第3组的人数为0.3×100=30,游核

    第4组的人数为0.2×100=20,

    第5组的人数为0.1×100=10.

    所以3、4、5组人数共有60.…(3分)

    所以利用分层抽样的方法在60名学生中抽取6名新生,分层抽样的抽样比为

    6
    60
    =
    1
    10
    .…(4分)

    所以在第3组抽取的人数为3人,

    在第4组抽取的人数为2人,

    在第5组抽取的人数为1人,…(7分)

    (Ⅲ)记第3组的3名新生为A,B,C,第4组的2名新生为a,b,第5组的1名新生为1.

    则从6名新生中抽取2名新生,共有:

    (A,B),(A,C),(A,a),(A,b),(A,1),

    (B,C),(B,a),(B,b),(B,1),(C,a),

    (C,b),(C,1),(a,b),(a,1),(b,1),共有15种.…(9分)

    其中第4组的2名新生a,b至少有一名新生被抽中的有:

    (A,a),(A,b),(B,a),(B,b),(C,a),

    (C,b),神肆掘(a,b),(a,1),(b,1),共有9种,…(11分)

    则第4组至少有一名雹亩新生被抽中的概率P=

    9
    15
    =
    3
    5
    …(13分)

    上海中考数学二模卷2017

    已经公布了。

    2022年北京昌平区中知困考的二模成绩已经公布了,最低分为66,最高分为570。

    北京中考满分宽仿为660分,这次昌慎猛纤平区中考二模考570分的只有1个。

    2017徐汇数学二模答案

    我的学习生活

    我叫***,今年12岁,是个男孩。我在长沙雅礼中学***班学习。我是一个地隧道道的江西人,由于湖南教育质量高,于是我踏上了求学之路。我的舅舅住在学校四周,因此我是一个走读生,天天得走路让我腿部肌肉很发达,让我在篮球场上出色表现。

    我的学习成绩不是很好,处在中下游状态。上课的时候,我总是喜欢插嘴,这是一个坏毛病。在学习上,说实话我并不是很努力,我总是像个碌碌无为的工作者一样,天天过着同样的生活。对待作业,我也是时好时坏,于是我成了办公室的“常客”。学习态度上,我并不是很认真,有时总觉得时间很多,到头来才意识到那些浪费的时间成了忏悔。在求学的道路上,我的折线图像重峦叠嶂的群山,起伏迭荡,我的分数从来就没稳定过,或许这正是我寻找学习毛病的所在吧。

    在以前我还没有走读时,我在寝室的生活也不是十分中规中矩,纪律总是扣一两分,还有内务,叠被子,打扫卫生,我也总是做得不好。因此,每次罚扫我总要添一好洞号。寝室的生活得快乐也少不了我,洗澡的时候用五音不求的喉咙歌唱,总是招来生活老师的大声斥责。还有早上刷牙洗脸的搞怪,中午吹哨前的笑话集锦,也少不了我的份。呵呵!正是这种好玩的态度,可能把我的成绩给压下往了吧!当我走读以后,同学们都说寝室多有味,你怎么不 来?我说我也不想,可惜家长不肯。我是多么怀念寝室的生活。

    正因我的态度,我的最大的爱好是篮球,球场上有我陪州的灵敏,我的尽杀时刻,我的惊天一投,我的搞笑动作,当然还有我的低级失误。初一时,我只有一米四的身高,因此我只能在场边看同学打球,由于没有人选我加进队中。到了初二,我偶然上场,不过只是“替补时间”罢了。后来我长高了,我有一米六了,我可以单手抓起一颗篮球,我改变了我的球风,变得刚硬生猛,灵敏疾速。这友乱枯时,上帝才开始给我篮球才华真正的时间。我可以在任何人前面抢到篮板,我可以送比我高一个头的同学一个大大的“火锅”,我可以表现出色助攻,当然我也会自己试试身手。但是我的搞怪球风也让同学们有时对我顿深恶意。于是我又踢起了足球,也许是我对篮球的过度热爱,我太喜欢用手往碰球了。于是我只好当起守门员,技术还可以吧。又由于我拼命的冲劲,当前锋最合适不过了,所以踢球是我成了热门人选。同学还略带讽刺的送我外号曰“机器”冷不丁一脚尖,踢断了腿可别怪我!嘻嘻!

    不知为何,我运动场上的***并没有在我的学习上爆发出来。假如我的学习有那么狠,我肯定我能进年级前列,遗憾的是我没有。不过我很快会的,由于胜利在等着我。太阳照亮了我,在我的身上映出了金色的光芒,那是多么的刺眼,多么的闪亮。这就是我。

    猜你喜欢