当前位置: 首页 > 所有学科 > 数学

数学3考什么,数学三考试范围

  • 数学
  • 2023-06-04
目录
  • 数学三级数考什么
  • 数三要考什么
  • 考研数学3真题
  • 数一数二数三哪个最难
  • 考研的数学三考什么

  • 数学三级数考什么

    2023年考研数芹颂学漏握

    考研资料返首庆实时更新

    1OaxK1mrBZDySwYCEKqepgQ

    ?pwd=2D72

    2D72

    简介:2023考研数学培训辅导班程,权威发布最新考研数学一二三各科目教学培训课程资料,考研数学电子书教材,考研数学复习资料。

    数三要考什么

    考研数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。

    考试内容:

    一、微积分

    函数、极限、连续

    考试要求

    1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

    2.了解函数的有界性.单调性.周期性和奇偶性.

    3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

    4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

    5.了解数列极限和函数极限(包括左极限与右极限)的概念.

    6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.

    7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.

    8.理解函数连续性的轮扮概念(含左连续与右连续),会判别函数间断点的类型.

    9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.

    二、一元函数微分学

    考试要求

    1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.

    2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数

    会求反函数与隐函数的导数.

    3.了解高阶导数的概念,会求简单函数的高阶导数.

    4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.

    5.理解罗尔(Rolle)定理.拉格朗日(

    Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.

    6.会用洛必达法则求极限.

    7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.

    8.会用导数判断函数图形的凹凸性(注:在区间

    内,设函数具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.

    9.会描述简单函数的图形.

    三、一元函数积分学

    考试要求

    1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.

    2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.

    3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.

    4.了解反常积分的概念,会计算反常积分.

    四、多元函数微积分学

    考试要求

    1.了解多元函数的概念,了解二元函数的几何意义.

    2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

    3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.

    4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大并桐圆值和最小值,并会解决简单的应用问题.

    5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.

    五、无穷级数

    考试要求

    1.了解级数的收敛与发散.收敛级数的和的概念.

    2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.

    3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.

    4.会求幂级数的收敛半径、收敛区间及收敛域.

    5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.

    6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麦克劳林(Maclaurin)展开式.

    六、常微分方程与差分方程

    考试要求

    1.了解微分方程及其阶、解、通解、初始绝塌条件和特解等概念.

    2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.

    3.会解二阶常系数齐次线性微分方程.

    4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.

    5.了解差分与差分方程及其通解与特解等概念.

    6.了解一阶常系数线性差分方程的求解方法.

    7.会用微分方程求解简单的经济应用问题.

    七、线性代数

    行列式

    考试内容:行列式的概念和基本性质

    行列式按行(列)展开定理

    考试要求

    1.了解行列式的概念,掌握行列式的性质.

    2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

    八、矩阵

    考试要求

    1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

    2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

    3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

    4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

    5.了解分块矩阵的概念,掌握分块矩阵的运算法则.

    九、向量

    考试要求

    1.了解向量的概念,掌握向量的加法和数乘运算法则.

    2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

    3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.

    4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.

    5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

    十、线性方程组

    考试要求

    1.会用克莱姆法则解线性方程组.

    2.掌握非齐次线性方程组有解和无解的判定方法.

    3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

    4.理解非齐次线性方程组解的结构及通解的概念.

    5.掌握用初等行变换求解线性方程组的方法.

    十一、矩阵的特征值和特征向量

    考试要求

    1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

    2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.

    3.掌握实对称矩阵的特征值和特征向量的性质.

    十二、二次型

    考试要求

    1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.

    2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.

    3.理解正定二次型.正定矩阵的概念,并掌握其判别法.

    十三、概率统计

    随机事件和概率

    考试要求

    1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.

    2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.

    3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

    十四、随机变量及其分布

    考试要求

    .理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.

    2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布

    、几何分布、超几何分布、泊松(Poisson)分布 及其应用.

    3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.

    4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布

    、指数分布及其应用,其中参数为 的指数分布 的概率密度为

    5.会求随机变量函数的分布.

    十五、多维随机变量及其分布

    考试要求

    1.理解多维随机变量的分布函数的概念和基本性质.

    2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.

    3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.

    4.掌握二维均匀分布和二维正态分布

    ,理解其中参数的概率意义.

    5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.

    十六、随机变量的数字特征

    考试要求

    理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.

    2.会求随机变量函数的数学期望.

    3.了解切比雪夫不等式.

    十七、大数定律和中心极限定理

    考试要求

    1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

    2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.

    十八、数理统计的基本概念

    考试要求

    1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为

    2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、分布和分布得上侧 分位数,会查相应的数值表.

    3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.

    4.了解经验分布函数的概念和性质.

    十九、参数估计

    考试内容:点估计的概念 估计量与估计值 矩估计法

    最大似然估计法

    考试要求

    1.了解参数的点估计、估计量与估计值的概念.

    2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

    考研数学3真题

    考研数学究竟考什么呢?纵观过去20年的考研试卷,我认为主要考查的一个方面就是基础,基础是通过填空题和单选题来考核的,当然了,我们的计算题、证明题以及应用题也与基础息息相关,所以抓基础是重中之重,希望同学们一定注意。数学中的这三门课中哪些是基础呢?事实上,高数部分的重中之重,基础的基础应该是极限、导数、不定积分,后面的定积分、一元微积分的应用、微积分方程、多元函数的微积分这些内容可以看作是这三部分内容的应用和延伸,所以前面这三部分是非常重要的,希望同学们下大力气把简手银它掌握好。

    线性代数的基础是矩阵的初等变换和线性拦宴方程组的结构定理,求方阵的逆矩阵、向量组的线性相关性、矩阵的特薯斗征值、特征向量这些内容都和前面的基础息息相关,别看矩阵的初等变化就那么三句话很简单,但是做题的时候错往往就错在这些最简单的问题上。给你一个矩阵在很短的时间内化成最简形,不是那么容易的,所以同学们一定要下苦工夫,练基本功。概率统计的基础应该是前面三章,第一章事件的概率,其中的乘法公式、全概、逆概公式是非常重要的,第二章随机变量及其分布,应该特别关注二维随机变量的

    数一数二数三哪个最难

    考研数学三考试科目有:微积分、线性代数、概率论与数理统计。

    各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。

    题型结世物构是一样的。分别为:单项选择题8小题,每题4分,共32分;填空题6小题,每题4分,共24分;解答题(包括证明题)9小题,共94分。

    ①高等数学数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济卖返闹大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。而考数学三的同学中在实际复习过程中使用哪一中罩本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);

    ②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);

    ③概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

    考研的数学三考什么

    数学考研历年唯态题目

    链接薯兄:1abNj3eqkESzbgjpvpthTYw

    9c0p

    若指手源资源有问题欢迎追问

    猜你喜欢