当前位置: 首页 > 所有学科 > 数学

数学高中必修二,数学高中必修二人教版电子课本

  • 数学
  • 2023-07-20

数学高中必修二?注意点:a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2平面与平面垂直的判定 1、那么,数学高中必修二?一起来了解一下吧。

人教版高二数学必修二

很多同学在复习高中数学必修二的知识点时,因为没有做过的总结,导致复习效率不高。下面是由我为大家整理的“高中数学必修二知识归纳总结”,仅供参考,欢迎大家阅读本文。

数学必修二的知识点总结

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(3)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(4)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中。

高一数学新教材必修二电子版

石头听了,感谢不尽。那僧便念咒书符,大展幻术,将一

块大石登时变成一块鲜明莹洁的美玉,且又缩成扇坠大小的可

佩可拿。那僧托于掌上,笑道:“形体倒也是个宝物了!还只

没有实在的好处,须得再镌上数字,使人一见便知是奇物方妙

。然后携你到那昌明隆盛之邦,诗礼簪缨之族,花柳繁华地,

温柔富贵乡去安身乐业。”石头听了,喜不能禁,乃问:“不

知赐了弟子那几件奇处,又不知携了弟子到何地方?望乞明示

,使弟子不惑。”那僧笑道:“你且莫问,日后自然明白的说

着,便袖了这石,同那道人飘然而去,竟不知投奔何方何舍。

后来,又不知过了几世几劫,因有个空空道人访道求仙,忽从

这大荒山无稽崖青埂峰下经过,忽见一大块石上字迹分明,编

述历历。空空道人乃从头一看,原来就是无材补天,幻形入世

蒙茫茫大士渺渺真人携入红尘,历尽离合悲欢炎凉世态的一段

此系身前身后事,倩谁记去作奇传?诗后便是此石坠落之乡投

胎之处,亲自经历的一段陈迹故事。其中家庭闺阁琐事,以及

闲情诗词倒还全备,或可适趣解闷,然朝代年纪、地舆邦国反

空空道人遂向石头说道:“石兄,你这一段故事,据你自己说

有些趣味,故编写在此,意欲问世传奇。据我看来,第一件,

无朝代年纪可考;第二件,并无大贤大忠理朝廷治风俗的善政

,其中只不过几个异样女子,或情或痴,或小才微善,亦无班

姑蔡女之德能。

数学高中必修三电子书

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,也是高中的三大主科之一。下面我整理了《人教版高中数学必修二目录》,供大家参考!

人教版高中数学必修二目录:第一章 空间几何体

1.1空间几何体的结构

1.2空间几何体的三视图和直观图——阅读与思考 画法几喊烂裂何与蒙日

1.3空间几何体的表面积与体积

——探究与发现 组暅(xuan)原理与柱体、锥体、球体的体积

实习作业

小结

复习参考题

人教版高中数学必修二目录:第二章 点、直线、平面之间的位置关系

2.1空间点、直线、平面之间的位置关系

2.2直线、平面平行的判定及其性质

2.3直线、平面垂直的判定及其性质

阅读与思考 欧几里得《原本》与公理化方法

小结

复习参考题

人郑闭历拿教版高中数学必修二目录:第三章 直线与方程

3.1直线的倾斜角与斜率——探究与发现 魔术师的地毯

3.2直线的方程

3.3直线的交点坐标与距离公式——阅读与思考 笛卡尔与解析几何

小结

复习参考题

人教版高中数学必修二目录:第四章 圆与方程

4.1圆的方程——阅读与思考 坐标法与机器证明

4.2直线、圆的位置关系

4.3空间直角坐标系——信息技术应用 用《几何画板》探究点的轨迹:圆

小结

复习参考题

高中必修二数学书电子版

高一数学必修二知识点同学们归纳总结过吗,没有的话,快来我这里瞧瞧。下面是由我为大家整理的“高一数学必修二知识点总结归纳”,仅供参考,欢迎大家阅读。

高一数学必修二知识点总结归纳

柱、锥、台、球的结构特征几何体与体积

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

(3)棱台:

几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点

(4)圆柱:定义仔指:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

3、空间几何体的直观图——斜二测画法

斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;

原来与y轴平行的线段仍然与y平行,长度为原来的一半.

4、柱体、锥体、台体的表面庆胡积与体积

(1)几何体的表面积为几何体各个面的面积的和.

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

高中数学必修二知识点总结:直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条誉戚拦直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

当时,;当时,;当时,不存在.

过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

(3)直线方程

点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

斜截式:,直线斜率为k,直线在y轴上的截距为b

两点式:()直线两点,

截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

()斜率为k的直线系:,直线过定点;

()过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中.

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

(7)两条直线的交点

相交

交点坐标即方程组的一组解.

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

高一数学必修二电子版课本

高中数学必修2知识点

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

当时,; 当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都碧盯等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

注意:各式的适用范围 特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数如扮),其中直线不在直线系中。

以上就是数学高中必修二的全部内容,1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要多次运算来把行列式转换为上三角型或下三角型。2、交换行列式中的两行(列),行列式变号。3、行列式中某行(列)的公因子,可以提出放到行列式之外。4、。

猜你喜欢