当前位置: 首页 > 所有学科 > 数学

中国古代数学发展史,数学的发展历史

  • 数学
  • 2023-10-08

中国古代数学发展史?(一)中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。到原始公社末期,就已开始用文字符号取代结绳记事了。那么,中国古代数学发展史?一起来了解一下吧。

古代数学相当于今天什么水平

中国数学发展史概述

中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸.黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝(前2033-前1562),共经历十三世、十六王.其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周﹝前1027年—前771年,共历约二百五十七年,传十一世、十二王﹞.随后出现了中国历史上的第一次全国性大分裂形成的时期──春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家──秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持枯枝续发展,经历了统一强盛的前败瞎西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年).到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的慧空封建王朝──明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替.清朝是中国最后一个封建帝制国家.自此之后,中国脱离了帝制而转入了现代民主国家.

中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的.这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础.

一、中国数学的起源与早期发展

据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」.在殷墟出土的甲骨文卜辞中有很多记数的文字.从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万.

算筹是中国古代的计算,而这种计算方法称为筹算.算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍.

用算筹记数,有纵、横两种方式:

表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零.算筹为加、减、乘、除等运算建立起良好的条件.

筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的.

在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例.战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念.

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念.著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等.墨家还给出有穷和无穷的定义.《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等.这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展.

此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想.

二、中国数学体系的形成与奠基

这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史.秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识化、理论化,数学方面的专书陆续出现.

现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前).

西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱.此外,还有较复杂的开方问题和分数运算等.

《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年﹝公元前一世纪﹞.全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章.主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等.在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同.就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远.它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展.

魏晋时期中国数学在理论上有了较大的发展.其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端.三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想.赵爽还提出了用几何方法求解二次方程的新方法.263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术.

南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃.出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作.约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题.

公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范.他们同时在天文学上也有突出的贡献.其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926

中国古代数字的演变

春秋前中国数学的萌芽

我们的先民在从野蛮走向文明的漫长历程中,逐渐认识了数与形的概念。出土的新石器时期的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,都是几何知识的萌芽。先秦典籍中有“隶首作数”、“结绳记事”、“刻木记事”的记载,说明人们从辨别事物的多寡中逐渐认识了数,并创造了记数的符号。殷商甲骨文(公元前14—前11世纪)中已有13个记数单字,最大的数是“三万”,最小的是“一”。一、十、百、千、万,各有专名。其中已经蕴含有十进位置值制萌芽。传说伏羲创造了画圆的“规”、画方的“矩”,也传说黄帝臣子倕[chui垂]是“规矩”和“准绳”的创始人。早在大禹治水时,禹便“左准绳”(左手拿着准绳),“右规矩”(右手拿着规矩)(《史记·禹本纪》)。因此,我们可以说,“规”、“矩”、“准”、“绳”是我们祖先最早使用的数学。人们丈量土地面积,测算山高谷深,计算产量多少,粟米交换,制定历法,都需要数学知识。《周髀〔bi婢〕算经》载商高答周公问,提到用矩测望高深广远。相传西周初年周公(公元前11世纪)制礼,数学成为贵族子弟教育中六门必修课程——六艺之一。不过当时学在官府,数学的发展是相当缓慢的。

数的起源及演变过程

中国古代数学辉煌史

中国古代数学的萌芽

原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的

陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。

西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址

的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量

。据《史记·夏本纪》记载,夏禹治水时已使用了这些。

商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用

十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴

、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

公元前一世纪的《周髀算经祥蠢》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、

股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记

数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。

春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发

展是有划时代意义的。

数学的起源简介100字

数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。

中国古代数学的萌芽

原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。

西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量。据《史记·夏本纪》记载,夏禹治水时已使用了这些。

商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。

从古至今数学的起源与发展

数学的发展历史是:

1、第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。

2、第二芹凯时期:初等数学时期、常量数学时期(公元前六世纪槐首唯—公元十七世纪初)这个时期的基本的、最简单的成果构成中学数学的主要内容,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、铅培几何、代数。

3、第三时期:变量数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus)的创立。

4、第四时期:现代数学时期(十九世纪末开始),数学发展的现代阶段的开端,以其所有的基础-代数、几何、分析中的深刻变化为特征。

5、中国数学的全盛时期是隋中叶至元后期。任何一个国家科学的发达,都有离不开清平开明的社会环境和雄厚的经济基础。从隋朝中叶到元代末年,由于统治者总结了历代王朝倾覆的教训,采取一系列开明政策,经济得到了迅速发展,科学技术也得到了很大提高,而作为科学技术一部分的数学,也在此时进入了它的全盛时期。

以上就是中国古代数学发展史的全部内容,《九章算术》(省称《九章》)是中国最重要的数学经典,它之于中国和东方数学,大体相当于《几何原本》之于希腊和欧洲数学。在世界古代数学史上,《九章》与《原本》像两颗璀灿的明珠,东西辉映。

猜你喜欢