当前位置: 首页 > 所有学科 > 数学

八年级下册数学教材答案,八年级下册数学学生题库

  • 数学
  • 2023-10-17

八年级下册数学教材答案?沪科版八年级数学下册课本答案(三) 第39页 1、(1)3;1 (2)2/3;-2/3 (3)9/2;5/2 (4)7/4;1/4 (5)-3/2;0 (6)0;-1/3 2、(1)不是 (2)是 (3)是 (4)不是 (5)是 3、那么,八年级下册数学教材答案?一起来了解一下吧。

初二数学压轴题100题

8.因为题目说这两个函数是在同一平面直角坐标系中的图像。所以滚配这两个掘档函数的大散指图像一定会相交。所以选B,D

八年级下册数学书的参考答案

每念并道错的 八年级 数学课本习题做三遍。第一遍:讲评时;第二遍:一周后;第三遍:考试前。以下是我为大家整理的北师大版八年级下册数学课本的答案,希望你们喜欢。

八年级下册数学课本北师大版答案(一)

第20页练习

1.解:(1)假命题.如图1-2-34所示,

在Rt△ABC与Rt△A'B'C′中,∠A=∠A'=90°,

∠B=∠C=45°=∠B′=∠C′,AB= AC≠A'B′=A'C′,则Rt△ABC与Rt△A'B'C′不全等,

(2)真命题,

已知:如图1-2-35所示,∠C=∠C′=90°,∠A=∠ A′,且AB=A'B'.

求证:Rt△A BC≌Rt△A'B'C’.

证明:

∵∠C=∠C′= 90°,∠A=∠A′,且AB=A'B',

∴ Rt△ABC≌Rt△A'B'C’(AAS).

(3)真命题,

已知:如图1-2-35所示,∠C=∠C′=90°,AC=A'C',BC=B'C'.

求证:Rt△ABC≌Rt△A'B'C′.

证明:

∵AC=A'C′,∠C=∠C′=90°,BC=B′C′,

∴Rt△ABC≌Rt△A′B'C′(SAS).

(4)真命题

已知:如图1-2-36所示,∠C=∠C′=90°,

AC=A′C′,中线AD=A'D'.

求证:Rt△ABC≌RtAA'B'C′.

证明:

∵∠C=∠C′=90°,AD=AD ′,AC=A'C′,

∴Rt△ACD≌Rt△A'C'D'(HL).

∴DC=D'C’.

∵BC=2D,B'C'=2D'C',

∴BC=B'C′

∴Rt△ABC≌Rt△A'B'C(SAS).

2.解:相等理由:

∵AB=AC=12m.

∴由三点A,B,C 构成的三角形是等腰三角形.

又∵AO⊥BC.

∴ AO是等腰△ABC底边BC上的中线,

∴BO=CO,

∴两十木桩离旃轩底部的距离相等.

八年级下册数学课本北师大版答案(二)

习题1.6

1.证明:

∵D为BC的中点,

∴BD=CD.

在Rt△BDF和Rt△CDE中,

∴Rt△BDF≌Rt△CDE(HL).

∴∠B=∠C(全等三角形的对应边相等),

∴AB=AC(等角对等边),

∴△ABC是等腰三角形.

2.证明:

∵DE⊥AC,BF⊥AC,

∴∠DEC=∠BFA=90°.

在Rt△ABF和Rt△CDE中,

∴Rt△ABF≌Rt△CDE(HL).

∴AF=CE,∠A=∠C(全等三角形的对应边相等、对应角相等).

∴AB//CD,AF-EF=CE-RF,

∴AE=CF.

3.证明:

∵MP⊥OA,NP⊥OB,

∴∠PMO=∠PNO=90°.

又∵OM=ON,OP=OP,

∴Rt△POM≌Rt△PON(HL).

∴∠AOP=∠BOP,即OP平分∠AOP.

4.解:(1)假命题.当一个直角三角形雹高没的两边直角与另一个直角三角形源纳的一条直角边和斜边分别相等时,两个直角三角形不全等.

(2)假命题.当一个直角三角形的锐角和一条直角边与另一个直角三角形的一个锐角和一条斜边分别相等时,两个直角三角形不全等.

5.(1)解:边:DB=DA,BE=AE;角:∠B=∠BAD=30°,∠ADE=∠BDE=60°,∠BED=∠AED=90°.

(2)证明:

∵∠C=90°,∠B=30°,

∴∠BAC=60°.

∵∠BAD=∠B=30°.

∴∠CAD=∠EAD=30°.

又∵∠AED=∠C=90°,且AD=AD,

∴△ACD≌△AED(AAS).

(本题证法不唯一)

(3)不能.

八年级下册数学课本北师大版答案(三)

第23页

证明:

∵AB是线段CD的角平分线,

∴ED=EC,FC=FD(线段垂直平分线的性质定理).

∴∠ECD=∠EDC(等边对等角),∠FCD=∠FDC(等边对等角).

数学八下人教版电子书答案

1等差数列求和 一个数列,从第二个数起,每一个数减去它前面一个数的差是一个定数,这样的数列叫做等差数列,这个定数叫做公差。例如: (1)1、2、3、4、5、……99、100 (2)1、3、5、7、9、……97、99 (3)4、10、16、22、28……82、88 以上三个数列都是等差数列,数列(1)的公差是1,数列(2)的公差是2,数列(3)的公差是6。数列中每一个数都称为数列的项,第一个数称为第一项,第二个数称为第二项,其余类推。如果一个数列的项数是有限的,我们就把第一项称为首项,最后一项称为末项。 等差数列的和=(首项+末项)×项数÷2 末项=首项+公差×(项数—1) 首乎拆羡项=末项—公差×(项数—1) 项数=(末项—首项)÷公差+1例1 1+3+5+7+……+1997+1999=? 例2 求首项为5,末项为155, 项数为51的等差数列的和。例3 有60个数,第一个数是7,从 例4 数列3、8、13、18、…… 第二个数开始,后一个数总比前 的第80项是多少? 一个数多4,求这60个数的和。 例5 3+7+11+……+99=?例6 一个15项的等差数列,末项为110,公差为7。

八上数学全书思维导图人教版

第1章 平行线【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD 和∠DEC,同旁内角是∠AFD 和∠AED6.各4对.同位角有∠B 与∠GAD,∠B 与∠DCF,∠D 与∠HAB,∠D 与∠ECB;内错角有∠B 与∠BCE,∠B 与∠HAB,∠D 与∠GAD,∠D 与∠DCF;同橘渗旁内角有∠B 与∠DAB,∠B 与∠DCB,∠D 与∠DAB,∠D与∠DCB

【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,两直线平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是∠ADE 和∠ABC 的角平分线,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF

【1.2(2)】1.(1)2,4,内错角相等,两直线平行 (2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行 (2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以

∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB 与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略

【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°. ∵ AB∥CD, ∴ α=β6.(1)∠B=∠D (2)由2x+15=65-3x解得x=10,所以∠1=35°

【1.3(2)】1.(1)两直线平行,同位角相等 (2)两直线平行,内错角相等2.(1)× (2)× 3.(1)DAB

(2)BCD4.∵ ∠1=∠2=100°, ∴ m∥n(内错角相等,两直线平行).∴ ∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴

∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′耐伍配E=∠B=90°=∠D又

∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.

【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章 特殊三角形2.AB 与CD 平行.量得线段BD 的长约为2cm,所以两电线杆间的距离约为120m

【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM ⊥l5.如图,答案不,图中点C1,C2,C3均可2于 M,BN ⊥l3于 N,则 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=1昌指5cm7.AP 平分∠BAC.理由如下:由 AP 是中线,得 BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50

2.(1)∠4 (2)∠3 (3)∠1 ∴ ∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等

【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°

(2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS)

BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180

初二下数学书答案人教版

9、⑴由二次根式有意义得:

18-n≥0,得n≤18,

又n为自然数,且√(18-n)是整数,

∴18-n=0,1,4,9,16,

得祥拿n=18,17,14,9,2。

⑵∵24=2×2×2×2,

√(24n)是谨册搭整数,n为正整数,

∴n=2×3=6。

10、∵V=πr^2h,姿基

∴r=√(V/πh)=√(V/10π),

当V=5π、10π、20π时,

r =√(1/2)=√2/2,

r=√1=1、

r=√2。

以上就是八年级下册数学教材答案的全部内容,1等差数列求和 一个数列,从第二个数起,每一个数减去它前面一个数的差是一个定数,这样的数列叫做等差数列,这个定数叫做公差。例如: (1)1、2、3、4、5、……99、100 (2)1、3、5、7、9、……97、。

猜你喜欢