当前位置: 首页 > 所有学科 > 数学

七下数学试卷,四年级上册公式大全数学

  • 数学
  • 2023-11-03

七下数学试卷?初一数学 (试卷满分130分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题正确的选项代号填涂在答题卡相应的位置上)1.任意画一个三角形,那么,七下数学试卷?一起来了解一下吧。

初一下册数学试卷电子版10张

七年级数学下册期中检测试卷

1、两条直线的位置关系有()

A、相交、垂直 B、相交、平行C、垂直、平行 D、相交、垂直、平行

3、三条直线相交,会有个交点。

4、在平面直角坐标系中,点P(-1,2)的位置在()

A、第一象限 B、第二象限 C、第三象限 D、第四象限

5、已知y轴上的点P到原点的距离为5,则点P的坐标为()

A、(5,0) B、(0,5)或(0,-5) C、(0,5) D、(5,0)或(-5,0)

7、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()

A、95°B、120° C、130° D、无法确定

9、如图,直线a、b相交,已知∠1=38°,则∠2=度,∠3=°,∠4=°

10、一工程队在某地开渠,要使所开的渠道最短,请画出示意图并说出依据

11、已知直线a∥b,点M到直线a的距离是4cm,到直线b的距离是2cm,那么直线a和直线b的之间的距离为;

17、如图,点E是AB上一点,点F是DC上一点,点G是BC延长线上一点

(1)如果∠B=∠DCG,可以判断哪两条直线平行?请说明理由;

(2)如果∠DCG=∠D,可以判断哪两条直线平行?请说明理由;

(3)如果∠DFE+∠D=180°,可以判断哪两条直线平行?请说明理由。

免费初一试卷题库

【 #初一#导语】以下是由整理的关于七年级下册期末数学试题(含答案),大家可以参考一下。

初一数学

(试卷满分130分,考试时间120分钟)

一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题正确的选项代号填涂在答题卡相应的位置上)

1.任意画一个三角形,它的三个内角之和为

A.180°B.270°C.360°D.720°

2.下列命题中,真命题的是

A.相等的两个角是对顶角

B.若a>b,则>

C.两条直线被第三条直线所截,内错角相等

D.等腰三角形的两个底角相等

3.下列各计算中,正确的是

A.a3÷a3=aB.x3+x3=x6

C.m3•m3=m6D.(b3)3=b6

4.如图,已知AB//CD//EF,AF∥CG,则图中与∠A(不包括∠A)相

等的角有

A.5个B.4个

C.3个D.2个

5.由方程组,可得到x与y的关系式是

A.x+y=9B.x+y=3

C.x+y=-3D.x+y=-9

6.用四个完全一样的长方形(长、宽分别设为x、y)拼成如图所示的大正方

形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列

关系式中不正确的是

A.x+y=6B.x-y=2

C.x•y=8D.x2+y2=36

7.用长度为2cm、3cm、4cm、6cm的小木棒依次首尾相连(连接处可活动,损耗长度不计),构成一个封闭图形ABCD,则在变动其形状时,两个顶点间的距离为

A.6cmB.7cmC.8cmD.9cm

8.若3×9m×27m=321,则m的值是

A.3B.4C.5D.6

9.如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为

A.α+β-γ=180°B.α+γ=β

C.α+β+γ=360°D.α+β-2γ=180°

10.若二项式4m2+9加上一个单项式后是一个含m的完全平方式,则这

样的单项式共有,

A.2个B.3个C.4个D.5个

二、填空题(本大题共8小题,每小题3分,共24分)

11.化简▲.

12.“同位角相等,两直线平行”的逆命题是▲.

13.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=▲°.

14.已知x-y=4,x-3y=1,则x2-4xy+3y2的值为▲.

15.已知二元一次方程x-y=1,若y的值大于-1,则x的取值范围是▲.

16.如图,已知∠AOD=30°,点C是射线OD上的一个动点.在点C的运动过程中,△AOC恰好是等腰三角形,则此时∠A所有可能的度数为▲°.

17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=30°,则∠ABF的度数为▲.

18.若关于x的不等式2+2x

初一下册全套试卷

【模拟试题】(满分120分,答题时间:100分钟)

一、选择题(每小题4分,共32分)

1. 化简的结果是( )

A. B. C. D.

2. 计算20×3-2得 ( )

A. B. C. D. 0

3. 1纳米=0.000 000 001米,则250纳米等于 ( )

A. 2.5×10-6米 B. 2.5×10-7米 C. 2.5×10-8米 D. 2.5×10-9米

4. 100米比赛中,小明出发后不久就达到了快速跑阶段,并且将快速跑保持了一段时间,快到终点时他的速度有所下降,但还是第一个冲过了终点线.下面的哪一幅图可以近似地刻画出小明在这100米内跑步速度的变化情况? ( )

5. 如图所示,转盘被等分成12个扇形.自由转动这个转盘,当它停止转动时,指针落在深色区域的概率是 ( )

A. B. C. D.

6. 如图,直线e和直线a,b,c,d相交,∠1=80º,∠2=110º,∠3=60º,∠4=100º,则 ()

A. a∥b B. b∥c C. c∥d D. d∥a

7. 已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=

∠2.则图中全等的三角形共有()

A. 4对 B. 3对 C. 2对 D. 1对

8. 某公路急转弯处设立了一面圆形大镜子,从镜子中看到某汽车车牌的部分号码如图所示,则该车牌的部分号码为 ( )

A. E9362 B. E9365 C. E6395 D. E6392

二、沉着冷静耐心填(每小题4分,共32分)

9. 请你举一个日常生活中近似数的例子: .

10. 今年5月份,我国登山队成功登上了海拔高度为8 844.43米的世界最高峰——珠穆朗玛峰.将珠穆朗玛峰的这一高度用四舍五入法精确到百位,其有效数字是 .

11. 袋子里有2个红球、3个白球和5个黄球,每个球除颜色外都相同.从中任意摸出一球,则P(摸到白球)=,P(摸到红球或黄球)= .

12. 60º角的补角的度数是.

13. 如图,已知AC=BD,要使△ABC≌△DCB,只需增加一个条件 .

14. 一个等腰三角形的顶角是底角的2倍,则它各个内角的度数分别是 .

15. 在平面镜里看到背后墙上电子钟的示数如图所示,这时的时间应是.

16. 如图,AD和AE分别是△ABC的高线和中线,AD=BD=4,ED=1,则△ABC的面积是 .

三、神机妙算用心做(本大题共20分)

17.(本题6分)

18.(本题6分)

19.(本题8分),其中.

四、解答题(本大题共36分)

20. 看图填空:(8分)

已知:如图,BC∥EF,AD=BE,BC=EF

试证明 △ABC ≌ △DEF.

证明:∵AD=BE

∴___=BE+DB

即:___=___

∵BC∥ EF

∴___=___()

在△ABC和△DEF中

∴△ABC ≌ △DEF(SAS)

21.(本题6分)请将下列事件发生的可能性标在图中(把序号标出即可):

(1)7月3日太阳从西边升起;(2)在20瓶饮料中,有2瓶已过了保质期,从中任取一瓶,恰好是在保质期内的饮料;(3)在5张背面分别标有“1”“2”“3”“4”“5”的形状完全一样的卡片中任取一张恰好是“4”的卡片;(4)在数学活动小组中,某一小组有3名女生、2名男生,随机地指定1人为组长,恰好是女生.

22. (本题10分)某文具店出售书包与文具盒,书包每个定价50元,文具盒每个定价10元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的8.5折(总价的85%)付款.某班学生需购买l2个书包、文具盒若干(不少于12个).如果设文具盒数为个,付款数为元.根据条件解决下列问题:

(1)分别求出两种优惠方案中与之间的关系;

(2)买多少个文具盒时,付款数相同?

23.(本题12分)如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA,∠AEB=。

七年级数学期末试卷及答案

初一数学试题

一、填空题(2分×15分=30分)

1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 .

2、计算:①100×103×104 = ;②-2a3b4÷12a3b2 = .

3、(8xy2-6x2y)÷(-2x)= .

4、(-3x-4y) ·( ) = 9x2-16y2.

5、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 .

6、如果x+y=6, xy=7, 那么x2+y2= .

7、有资料表明,被称为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为______________公顷.

8、 太阳的半径是6.96×104千米,它是精确到_____位,有效数字有_________个.

9、 小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出的数字小于7)=_______.

10、图(1),当剪子口∠AOB增大15°时,∠COD增大 .

11、吸管吸易拉罐内的饮料时,如图(2),∠1=110°,则∠2= ° (易拉罐的上下底面互相平行)

图(1) 图(2) 图(3)

12、平行的大楼顶部各有一个射灯,当光柱相交时,如图(3),∠1+∠2+∠3=________°

二、选择题(3分×6分=18分)(仔细审题,小心陷井!)

13、若x 2+ax+9=(x +3)2,则a的值为 ( )

(A) 3 (B) ±3 (C) 6 (D)±6

14、如图,长方形的长为a,宽为b,横向阴影部分为长方形,

另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面

积是( )

(A) ab-bc+ac-c 2 (B) ab-bc-ac+c 2

(C) ab- ac -bc (D) ab-ac-bc-c 2

15、下列计算 ① (-1)0=-1 ②-x2.x3=x5③ 2×2-2= ④ (m3)3=m6

⑤(-a2)m=(-am)2正确的有………………………………( )

(A) 1个 (B) 2个 (C) 3个 (D) 4个

图a 图b

16、 如图,下列判断中错误的是 ( )

(A) ∠A+∠ADC=180°—→AB‖CD

(B) AB‖CD—→∠ABC+∠C=180°

(C) ∠1=∠2—→AD‖BC

(D) AD‖BC—→∠3=∠4

17、如图b,a‖b,∠1的度数是∠2的一半,则∠3等于 ( )

(A) 60° (B) 100° (C) 120 (D) 130°

18、一个游戏的中奖率是1%,小花买100张奖券,下列说法正确的是 ( )

(A)一定会中奖 (B)一定不中奖(C)中奖的可能性大(D)中奖的可能性小

三、解答题:(写出必要的演算过程及推理过程)

(一)计算:(5分×3=15分)

19、123²-124×122(利用整式乘法公式进行计算)

20、 9(x+2)(x-2)-(3x-2)2 21、 0.125100×8100

22、某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?若10滴这种杀虫剂为 升,问:要用多少升杀虫剂?(6分)

24、一个角的补角比它的余角的二倍还多18度,这个角有多少度?(5分)

2007年七年级数学期中试卷

(本卷满分100分 ,完卷时间90分钟)

姓名: 成绩:

一、 填空(本大题共有15题,每题2分,满分30分)

1、如图:在数轴上与A点的距离等于5的数为 .

2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位.

3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 .

4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元.

5、当a=-2时,代数式 的值等于 .

6、代数式2x3y2+3x2y-1是 次 项式.

7、如果4amb2与 abn是同类项,那么m+n= .

8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 .

9、如果∣x-2∣=1,那么∣x-1∣= .

10、计算:(a-1)-(3a2-2a+1) = .

11、用计算器计算(保留3个有效数字): = .

12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次).

2,6,7,8.算式 .

13、计算:(-2a)3 = .

14、计算:(x2+ x-1)•(-2x)= .

15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= .(不能用计算器,结果中保留幂的形式)

二、选择(本大题共有4题,每题2分,满分8分)

16、下列说法正确的是…………………………( )

(A)2不是代数式 (B) 是单项式

(C) 的一次项系数是1 (D)1是单项式

17、下列合并同类项正确的是…………………( )

(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab

18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( )

A、 B、 -1 C、 D、以上答案不对

19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式

|a + b| - 2xy的值为( )

A. 0 B.-2 C.-1 D.无法确定

三、解答题:(本大题共有4题,每题6分,满分24分)

20、计算:x+ +5

21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-

22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分)

(1)

(2) ;

(3)由(1)、(2)你有什么发现或想法?

23、已知:A=2x2-x+1,A-2B = x-1,求B

四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分)

24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a

求:(1)梯形ADGF的面积

(2)三角形AEF的面积

(3)三角形AFC的面积

25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形

拼成一个正方形,求图形中央的小正方形的面积,你不难找到

解法(1)小正方形的面积=

解法(2)小正方形的面积=

由解法(1)、(2),可以得到a、b、c的关系为:

26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费.

(1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分)

(2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)

27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人.如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物.

求:(1)所有队员赠送的礼物总数.(用m的代数式表示)

(2)当m=10时,赠送礼物的总数为多少件?

28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%.那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少?

2006年第一学期初一年级期中考试

数学试卷答案

一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3

7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6

11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1

二、16、D 17、B 18、B 19、D

三、20、原式= x+ +5 (1’)

= x+ +5 (1’)

= x+ +5 (1’)

= x+4x-3y+5 (1’)

= 5x-3y+5 (2’)

21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’)

= x4-16-x4+4x2-4 (1’)

= 4x2-20 (1’)

当x = 时,原式的值= 4×( )2-20 (1’)

= 4× -20 (1’)

=-19 (1’)

22、原式=x2-2x+1+x2-9+x2-4x+3 (1’)

=3x2-6x-5 (1’)

=3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可)

=3×2-5 (1’)

=1 (1’)

23、 A-2B = x-1

2B = A-(x-1) (1’)

2B = 2x2-x+1-(x-1) (1’)

2B = 2x2-x+1-x+1 (1’)

2B = 2x2-2x+2 (1’)

B = x2-x+1 (2’)

24、(1) (2’)

(2) (2’)

(3) + - - = (3’)

25、(1)C2 = C 2-2ab (3’)

(2)(b-a)2或者b 2-2ab+a 2 (3’)

(3)C 2= a 2+b 2 (1’)

26、(25)2 = a2 (1’)

a = 32 (1’)

210 = 22b (1’)

b = 5 (1’)

原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’)

= a2- b2- a2- ab- b2 (1’)

=- ab- b2 (1’)

当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’)

若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以.

27、解(1):第一小队送给第二小队共(m+2)•m件 (2’)

第二小队送给第一小队共m•(m+2)件 (2’)

两队共赠送2m•(m+2)件 (2’)

(2):当m = 2×102+4×10=240 件 (2’)

28、设:1997年商品价格为x元 (1’)

1998年商品价格为(1+5%)x元 (1’)

1999年商品价格为(1+5%)(1+10%)x元 (1’)

2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’)

=0.0164=1.64% (2’)

答:2000年比1997年涨价1.64%. (1’)

初一数学竞赛试题 一. 选择题(每小题5分,共50分)以下每题的四个结论中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内. 1. 数a的任意正奇数次幂都等于a的相反数,则( ) A. B. C. D. 不存在这样的a值 2. 如图所示,在数轴上有六个点,且 ,则与点C所表示的数最接近的整数是( ) A. B. 0 C. 1 D. 2 (根据深圳市南山区蛇口中学王远征供题改编) 3. 我国古代伟大的数学家祖冲之在1500年以前就已经相当精确地算出圆周率 是在3.1415926和3.1415927之间,并取 为密率、 为约率,则( ) A. B. C. D. 4. 已知x和y满足 ,则当 时,代数式 的值是( ) A. 4 B. 3 C. 2 D. 1 5. 两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( ) A. 273 B. 819 C. 1911 D. 3549 6. 用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为( )米 A. B. C. D. 7. If we let be the greatest prime number not more than a ,then the result of the expression is ( ) A. 1333 B. 1999 C. 2001 D. 2249 (英汉词典:greatest prime number最大的质数;result结果;expression表达式) 8. 古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸.地支也有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行: 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥…… 从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,则当第2次甲和子在同一列时,该列的序号是( ) A. 31 B. 61 C. 91 D. 121 9. 满足 的有理数a和b,一定不满足的关系是( ) A. B. C. D. 10. 已知有如下一组x,y和z的单项式: , 我们用下面的方法确定它们的先后次序;对任两个单项式,先看x的幂次,规定x幂次高的单项式排在x幂次低的单项式的前面;再看y的幂次,规定y的幂次高的排在y的幂次低的前面;再看的z幂次,规定的z幂次高的排在z的幂次低的前面. 将这组单项式按上述法则排序,那么, 应排在( ) A. 第2位 B. 第4位 C. 第6位 D. 第8位 二. 填空题(每小题6分,共60分) 11. 一个锐角的一半与这个锐角的余角及这个锐角的补角的和等于平角,则这个锐角的度数___________. 12. If ,then result of is ________. 13. 已知:如图1, 中,D、E、F、G均为BC边上的点,且 , , .若 1,则图中所有三角形的面积之和为_____. 14. 使关于x的方程 同时有一个正根和一个负根的整数a的值是______. 15. 小明的哥哥过生日时,妈妈送了他一件礼物:即三年后可以支取3000元的教育储蓄.小明知道这笔储蓄年利率是3%(按复利计算),则小明妈妈为这件生日礼物在银行至少要存储________元.(银行按整数元办理存储) 16. m为正整数,已知二元一次方程组 有整数解,即x,y均为整数,则 __________. 17. 已知:如图2,长方形ABCD中,F是CD的中点, , .若长方形的面积是300平方米,则阴影部分的面积等于____平方米. 18. 一幅图象可以看成由m行n列个小正方形构成的大矩形,其中每个小正方形称为一个点,每个点的颜色是若干个颜色中的一个,给定了m,n以及每个点的颜色就确定了一幅图象.现在,用一个字节可以存放两个点的颜色.那么当m和n都是奇数时,至少需要_____个字节存放这幅图象的所有点的颜色. 19. 在正整数中,不能写成三个不相等的合数之和的最大奇数是_____________. 20. 在密码学中,称直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码.对于英文,人们将26个字母按顺序分别对应整数0到25,现有4个字母构成的密码单词,记4个字母对应的数字分别为 ,已知:整数 , , , 除以26的余数分别为9,16,23,12,则密码的单词是_________. 三. 解答题(21、22题各13分,23题14分,共40分)要求:写出推算过程. 21. 有依次排列的3个数:3,9,8,对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9, ,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9, , ,9,8,继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少? 22. 如图3, .证明: 23. 一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元? 〖答案〗 一. 选择题: 1. A 2. C 3. C 4. D 5. B 6. C 7. B 8. B 9. A 10. D 二. 填空题(本大题共60分.对于每个小题,答对,得6分;答错或不答,不给分) 11. 12. 12 13. 7 14. 0 15. 2746 16. 4 17. 137.5 18. 19. 17 20. hope 三. 解答题: 21. 一个依次排列的n个数组成一个n一数串: , 依题设操作方法可得新增的数为: 所以,新增数之和为: 原数串为3个数:3,9,8 第1次操作后所得数串为:3,6,9, ,8 根据(*)可知,新增2项之和为: 第2次操作后所得数串为: 3,3,6,3,9, , ,9,8 根据(*)可知,新增2项之和为: 按这个规律下去,第100次操作后所得新数串所有数的和为: 22. 证法1:因为 , 所以 (两直线平行,同旁内角互补) 过C作 (如图1) 因为 ,所以 (平行于同一条直线的两条直线平行) 因为 ,有 ,(两直线平行,内错角相等) 又因为 ,有 ,(两直线平行,内错角相等) 所以 (周角定义) 所以 (等量代换) 证法2:因为 , 所以 (两直线平行,同旁内角互补) 过C作 (如图2) 因为 ,所以 (平行于同一条直线的两条直线平行) 因为 ,有 ,(两直线平行,同旁内角互补) 又因为 ,有 ,(两直线平行,同旁内角互补) 所以 所以 (等量代换) 23. 设小熊和小猫的个数分别为x和y,总售价为z,则 (*) 根据劳力和原材料的限制,x和y应满足 化简为 及 当总售价 时,由(*)得 得 得 , 即 得 得 , 即 综合(A)、(B)可得 ,代入(3)求得 当 时,有 满足工时和原料的约束条件,此时恰有总售价 (元) 答:只需安排生产小熊14个、小猫24个,就可达到总售价为2200元.,2,12x3=36,2,α+β≥123456789,0,

数学七年级下册试题

七年级(下)第一次月考数学试卷 篇1

一、选择题(每题3分,共30分)

1.已知方程①2x+y=0;② x+y=2;③x2﹣x+1=0;④2x+y﹣3z=7是二元一次方程的是()

A.①② B.①②③ C.①②④ D.①

2.以 为解的二元一次方程组是()

A. B. C. D.

4.已知 是方程kx﹣y=3的一个解,那么k的值是()

A.2 B.﹣2 C.1 D.﹣1

5.方程组 的解是()

A. B. C. D.

6.“六一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装的x套,B型童装y套,依题意列方程组正确的是()

A. B.

C. D.

7.若方程mx+ny=6的两个解是 , ,则m,n的值为()

A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4

8.已知 ,则a+b等于()

A.3 B. C.2 D.1

9.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()

A. B.

C. D.

10.某市准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队单独工作8天,则余下的任务由乙工程队单独完成需要3天;设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为()

A.20 B.15 C.10 D.5

二、填空题(每题4分,共32分)

11.如果x=﹣1,y=2是关于x、y的二元一次方程mx﹣y=4的一个解,则m=.

12.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:.

13.孔明同学在解方程组 的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为 ,又已知直线y=kx+b过点(3,1),则b的正确值应该是.

14.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55cm,此时木桶中水的深度是cm.

15.方程组 的解是.

16.设实数x、y满足方程组 ,则x+y=.

17.4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=.

18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.

三、解答题

19.解方程组:

(1) ;

(2) .

20.已知方程组 和 有相同的解,求a、b的值.

21.关于x,y方程组 满足x、y和等于2,求m2﹣2m+1的值.

22.浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?

23.在一次数学测验中,甲、乙两校各有100名同学参加测试,测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.

(男(女)生优分率= ×100%,全校优分率= ×100%)

(1)求甲校参加测试的男、女生人数各是多少?

(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.

24.某中学新建了一栋4层的`教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.

七年级(下)第一次月考数学试卷 篇2

一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一个是正确的,请将正确答案的代号填人答题卷中对应的表格内.

1.(4分)在下列实例中,属于平移过程的个数有()

①时针运行过程;

②电梯上升过程;

③火车直线行驶过程;

④地球自转过程;

⑤生产过程中传送带上的电视机的移动过程.

A.1个B.2个C.3个D.4个

【解答】解:①时针运行是旋转,故此选项错误;

②电梯上升,是平移现象;

③火车直线行驶,是平移现象;

④地球自转,是旋转现象;

⑤电视机在传送带上运动,是平移现象.

故属于平移变换的个数有3个.

故选:C.

2.(4分)如图,由AB∥CD可以得到()

A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4

【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A错误;

B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;

C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;

D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.

故选:C.

3.(4分)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()

A.6个B.5个C.4个D.3个

【解答】解:如图,∵EG∥DB,

∴∠1=∠2,∠1=∠3,

∵AB∥EF∥DC,

∴∠2=∠4,∠3=∠5=∠6,

∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.

故选:B.

4.(4分)已知点P到x轴的距离为3,到y轴的距离为2,且在第二象限,则点P的坐标为()

A.(2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,2)

【解答】解:∵点P到x轴的距离为3,到y轴的距离为2,且在第二象限,

∴点P的横坐标是﹣2,纵坐标是3,

∴点P的坐标为(﹣2,3).

故选:B.

5.(4分)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()

A.第一次左拐30°,第二次右拐30°

B.第一次右拐50°,第二次左拐130°

C.第一次右拐50°,第二次右拐130°

D.第一次向左拐50°,第二次向左拐120°

【解答】解:如图所示(实线为行驶路线)

A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.

故选:A.

6.(4分)三条直线两两相交于同一点时,对顶角有m对;交于不同三点时,对顶角有n对,则m与n的关系是()

A.m=n B.m>n C.m<n D.m+n=10

【解答】解:因为三条直线两两相交与是否交于同一点无关,所以m=n,故选A.

7.(4分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()

A.1个B.2个C.3个D.4个

【解答】解:、是无理数.

故选:B.

8.(4分)下列语句中,正确的是()

A.一个实数的平方根有两个,它们互为相反数

B.负数没有立方根

C.一个实数的立方根不是正数就是负数

D.立方根是这个数本身的数共有三个

【解答】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;

B、负数有立方根,故选项B错误,

C、一个数的立方根不是正数可能是负数,还可能是0,故选项C错误,

D、立方根是这个数本身的数共有三个,0,1,﹣1,故D正确.

故选:D.

9.(4分)下列运算中,错误的是()

①=1,②=±4,③=﹣④=+=.

A.1个B.2个C.3个D.4个

【解答】解:①==,原来的计算错误;

②=4,原来的计算错误;

③=﹣=﹣1,原来的计算正确;

④==,原来的计算错误.

故选:C.

10.(4分)请你观察、思考下列计算过程:因为11 2 =121,所以=11;因为111 2 =12321,所以=111;…,由此猜想=()

【解答】解:∵=11,=111…,…,

∴═111 111 111.

故选:D.

11.(4分)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()

A.β=α+γ B.α+β+γ=180° C.α+β﹣γ=90° D.β+γ﹣α=180°

【解答】解:延长DC交AB与G,延长CD交EF于H.

在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,

∵AB∥EF,

∴∠1=∠2,

∴90°﹣α=β﹣γ,即α+β﹣γ=90°.

故选:C.

12.(4分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:

①AD∥BC;

②∠ACB=2∠ADB;

③∠ADC=90°﹣∠ABD;

④BD平分∠ADC;

⑤∠BDC=∠BAC.

其中正确的结论有()

A.2个B.3个C.4个D.5个

【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,

∵AD是∠EAC的平分线,

∴∠EAC=2∠EAD,

∴∠EAD=∠ABC,

∴AD∥BC,故①正确,

∴∠ADB=∠CBD,

∵BD平分∠ABC,

∴∠ABC=2∠CBD,

∵∠ABC=∠ACB,

∴∠ACB=2∠ADB,故②正确;

∵AD∥BC,

∴∠ADC=∠DCF,

∵CD是∠ACF的平分线,

∴∠ADC=∠ACF=(∠ABC+∠BAC)=(180°﹣∠ACB)=(180°﹣∠ABC)=90°﹣∠ABD,故③正确;

由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,

∵BD平分∠ABC,CD平分∠ACF,

∴∠DBC=∠ABC,∠DCF=∠ACF,

∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,

∴∠BDC=∠BAC,故⑤正确;

∵AD∥BC,

∴∠CBD=∠ADB,

∵∠ABC与∠BAC不一定相等,

∴∠ADB与∠BDC不一定相等,

∴BD平分∠ADC不一定成立,故④错误;

综上所述,结论正确的是①②③⑤共4个.

故选:C.

二、填空题(每题4分,共24分)请将答案直接写到对应的横线上.

13.(4分)比较大小:﹣3<﹣2,>(填“>”或“<”或“=”)

【解答】解:∵﹣<﹣,

∴﹣3<﹣2.

∵:∵2<<3,

∴1<﹣1<2,

∴<<1.

故答案是:<;>.

14.(4分)若点P(a+5,a﹣2)在x轴上,则a=2,点M(﹣6,9)到y轴的距离是6.

【解答】解:根据题意得a﹣2=0,则a=2,

点M(﹣6,9)到y轴的距离是|﹣6|=6,

故答案为:2、6.

15.(4分)大于﹣,小于的整数有5个.

【解答】解:∵1<2,3<4,

∴﹣2<﹣<﹣1,

∴大于﹣,小于的整数有﹣1,0,1,2,3,共5个,

故答案为:5.

16.(4分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为72度,108度.

【解答】解:设其中一个角是x,则另一个角是180﹣x,根据题意,得

x=(180﹣x)

解得x=72,

∴180﹣x=108;

故答案为:72、108.

17.(4分)如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是120°.

【解答】解:∵AD∥BC,

∴∠DEF=∠EFB=20°,

在图(2)中∠GFC=180°﹣2∠EFG=140°,

在图(3)中∠CFE=∠GFC﹣∠EFG=120°,

故答案为:120°.

18.(4分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:2 3,3 3和4 3分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即2 3 =3+5;3 3 =7+9+11;4 3 =13+15+17+19;…;若6 3也按照此规律来进行“分裂”,

则6 3 “分裂”出的奇数中,最大的奇数是41.

【解答】解:由2 3 =3+5,分裂中的第一个数是:3=2×1+1,

3 3 =7+9+11,分裂中的第一个数是:7=3×2+1,

4 3 =13+15+17+19,分裂中的第一个数是:13=4×3+1,

5 3 =21+23+25+27+29,分裂中的第一个数是:21=5×4+1,

6 3 =31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,

所以6 3 “分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.

故答案为:41.

三、计算(总共22分)请将每小题答案做到答题卡对应的区域.

19.(16分)计算:

(1)利用平方根解下列方程.

①(3x+1)2﹣1=0;

②27(x﹣3)3=﹣64

(2)先化简,再求值:3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy],其中x=3,y=﹣.

【解答】解:(1)①(3x+1)2﹣1=0

∴(3x+1)2=1

∴3x+1=1或3x+1=﹣1

解得x=0或x=﹣;

②27(x﹣3)3=﹣64

∴(x﹣3)3=﹣[来源:学|科|网]

∴x﹣3=﹣

∴x=;

(2)3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy]

=3x 2 y﹣(2xy﹣2xy+3x 2 y+xy)

=3x 2 y﹣2xy+2xy﹣3x 2 y﹣xy

=﹣xy

当x=3,y=﹣时,原式=﹣3×(﹣)=1.

20.(6分)已知5+的小数部分是a,5﹣的小数部分是b,求:

(1)a+b的值;

(2)a﹣b的值.

【解答】解:∵3<<4,

∴8<5+<9,1<5﹣<2,

∴a=5+﹣8=﹣3,b=5﹣﹣1=4﹣,

∴a+b=(﹣3)+(4﹣)=1;

a﹣b=(﹣3)﹣(4﹣)=2﹣7.

四、解答题(56分)请将每小题的答案做到答题卡中对应的区域内.

21.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.

【解答】解:∵AB∥CD,

∴∠CFG=∠AGE=50°,

∴∠GFD=130°;

又FH平分∠EFD,

∴∠HFD=∠EFD=65°;

∴∠BHF=180°﹣∠HFD=115°.

[来源:Z*xx*k.Com]

22.(8分)若x、y都是实数,且y=++8,求x+3y的立方根.

【解答】解:∵y=++8,

解得:x=3,

将x=3代入,得到y=8,

∴x+3y=3+3×8=27,

∴=3,

即x+3y的立方根为3.

23.(8分)如果A=是a+3b的算术平方根,B=的1﹣a 2的立方根.

试求:A﹣B的平方根.

【解答】解:依题意有,

解得,

A==3,

B==﹣2

A﹣B=3+2=5,

故A﹣B的平方根是±.

24.(8分)已知:如图,AB∥CD,∠1=∠2.求证:∠E=∠F.

【解答】证明:分别过E、F点作CD的平行线EM、FN,如图

∵AB∥CD,

∴CD∥FN∥EM∥AB,

∴∠3=∠2,∠4=∠5,∠1=∠6,

而∠1=∠2,

∴∠3+∠4=∠5+∠6,

即∠E=∠F.

25.(12分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米,

(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;

(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ).请根据这个等量关系,求出x的值;

(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?

【解答】解:(1)若设图中最大正方形B的边长是x米,最小的正方形的边长是1米.

F的边长为(x﹣1)米,

C的边长为,

E的边长为(x﹣1﹣1);

(2)∵MQ=PN,

∴x﹣1+x﹣2=x+,

x=7,

x的值为7;

(3)设余下的工程由乙队单独施工,还要x天完成.

(+)×2+x=1,

x=10(天).

答:余下的工程由乙队单独施工,还要10天完成.

26.(12分)如图1,AB∥CD,在AB、CD内有一条折线EPF.

(1)求证:∠AEP+∠CFP=∠EPF.

(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.

(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.

(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为∠P+n∠Q=360°.(直接写结论)

【解答】(1)证明:如图1,过点P作PG∥AB,,

∵AB∥CD,

∴PG∥CD,

∴∠AEP=∠1,∠CFP=∠2,

又∵∠1+∠2=∠EPF,

∴∠AEP+∠CFP=∠EPF.

(2)如图2,,

由(1),可得

∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,

∵∠BEP的平分线与∠DFP的平分线相交于点Q,

∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)==,

∴∠EPF+2∠EQF=360°.

(3)如图3,,

由(1),可得

∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,

∵∠BEQ=∠BEP,∠DFQ=∠DFP,

∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),

∴∠P+3∠Q=360°.

(4)由(1),可得

∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,

∵∠BEQ=∠BEP,∠DFQ=∠DFP,

∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),

∴∠P+n∠Q=360°.

故答案为:∠P+n∠Q=360°.

七年级(下)第一次月考数学试卷 篇3

一、填空题

的倒数是____;的相反数是____;-0.3的绝对值是______。

以上就是七下数学试卷的全部内容,七年级下期末数学试卷答案 阅卷说明:本试卷60分及格,85分优秀. 一、选择题:(每小题3分,本题共30分) 题号1 2 3 4 5 6 7 8 9 10 答案D A B C A B D C D A 二、。

猜你喜欢