当前位置: 首页 > 所有学科 > 数学

初一数学人教版下册,人教初一下册数学目录

  • 数学
  • 2023-11-03

初一数学人教版下册?人教版七年级下册数学书内容是如下:一、正数和负数 二、有理数 三、数轴 四、相反数 五、绝对值 六、有理数的加减法 七、有理数的加法 八、有理数的减法 九、有理数的乘除法 十、有理数的乘法 十一、那么,初一数学人教版下册?一起来了解一下吧。

初中数学教学

只有有一个很好的教学谁,其七年级数学课程的效果才能会明显。这是我整理的七年级数学下册教学设计人教版,希望你能从中得到感悟!

七年级数学下教学设计人教版

6.1.2平方根

第2课时

【教学目标】

知识与技能:

会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。

过程与方法: 通过折纸认识第一个无理数2,并通过估计它的大小认识无限不循环小数的特点。用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。

情感态度与价值观: 通过探究2的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。

教学重点:

①认识无限不循环小数的特点,会估算一些数的算术平方根。

②会用算术平方根的知识解决实际问题。

教学难点:

认识无限不循环小数的特点,会估算一些数的算术平方根。

教学方法: 自主探究、启发引导、小组合作

教学过程:

一、通过实验引入:

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。

新人教版七年级数学下册教案

第一章:相交线与平行线

第二章:平面直角坐标系

第三章:三角形

第四章:二元一次方程

第五章:不等式与不等式组

第六章:数据的收集、整理与描述

初一数学人教版下册目录

七年级数学教材是数学课程教材编制专家在充分考虑学生生理心理特征、教育教学质量、数学学科特点等众多因素的基础上精心编写而成的,那目录都收录了哪些知识供大家学习呢?以下是我为大家整理的七年级数学下册目录人教版,希望你们喜欢。

七年级数学下册目录

第五章相交线与平行线

5.1相交线

观察与猜想看图时的错觉

5.2平行线及其判定

5.3平行线的性质

信息技术应用探索两条直线的位置关系

5.4平移

数学活动

小结

复习题5

第六章实数

6.1平方根

6.2立方根

6.3 实数

阅读与思考为什么√2不是有理数

数字活动

小结

复习题6

第七章平面直角坐标系

7.1平面直角坐标系

阅读与思考用经纬度表示地理位置

7.2坐标方法的简单应用

数学活动

小结

复习题7

第八章二元一次方程组

8.1二元一次方程组

8.2消元——解二元一次方程组

8.3实际问题与二元一次方程组

8.4三元一次方程组的解法

阅读与思考一次方程组的古今表示及解法

数学活动

小结

复习题8

第九章不等式与不等式组

9.1不等式

阅读与思考用求差法比较大小

9.2一元一次不等式

9.3一元一次不等式组

数学活动

小结

复习题9

第十章数据的收集、整理与描述

10.1统计调查

实验与探究瓶子中有多少粒豆子

10.2直方图

信息技术应用利用计算机画统计图

10.3课题学习 从数据谈节水

数学活动

小结

复习题10

部分中英文词汇索引

七年级数学三角形知识归纳

一、认识三角形

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。

数学书七年级下册目录

关于人教版初一数学下册课本中的知识点有哪些呢?学习从来无捷径,循序渐进登高峰。这是我整理的人教版初一数学下学期的知识点,希望你能从中得到感悟!

人教版初一数学下册知识点第五章 相交线与平行线

5.1 相交线

对顶角相等。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短。本知识点可会出现的填空题中来考)。

5.2 平行线 (重点知识必考)

1、经过直线外一点,有且只有一条直线与这条直线平行。

2、 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

3、直线平行的条件:

4、两条直线被第三条直线所截,如果同位角相等,那么两直线平行 两条直线被第三条直线所截,如果内错角相等,那么两直线平行(内错角相等,两直线平行)。

5、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行(同旁内角互补,两直线平行)。

5.3 平行线的性质 (重点知识必考)

1、两条平行线被第三条直线所截,同位角相等(两直线平行,同位角相等)。

2、两条平行线被第三条直线所截,内错角相等(两直线平行,内错角相等)。

3、两条平行线被第三条直线所截,同旁内角互补(两直线平行,同旁内角互补)。

人教版初一数学下册教材

初一数学(下)应知应会的知识点

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0 ,(a≠0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab>0或 ;

ab<0  或 ;ab=0  a=0或b=0;a=m .

7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.

8.一元一次不等式组的解集的四种类型:设 a>b

9.几个重要的判断: , ,

整式的乘除

1.同底数幂的乘法:am•an=am+n ,底数不变,指数相加.

2.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积.

3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.

4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.

5.多项式的乘法:(a+b)•(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.

6.乘法公式:

(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

(2)完全平方公式:

① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

※③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.

7.配方:

(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k

①可以判断ax2+bx+c值的符号; ②当x=h时,可求出ax2+bx+c的最大(或最小)值k.

※(3)注意: .

8.同底数幂的除法:am÷an=am-n ,底数不变,指数相减.

9.零指数与负指数公式:

(1)a0=1 (a≠0); a-n= ,(a≠0).注意:00,0-2无意义;

(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .

10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.

11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.

※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式•商式.

13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.

线段、角、相交线与平行线

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1. 角平分线的定义:

一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)

几何表达式举例:

(1) ∵OC平分∠AOB

∴∠AOC=∠BOC

(2) ∵∠AOC=∠BOC

∴OC是∠AOB的平分线

2.线段中点的定义:

点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)

几何表达式举例:

(1) ∵C是AB中点

∴ AC = BC

(2) ∵AC = BC

∴C是AB中点

3.等量公理:(如图)

(1)等量加等量和相等;(2)等量减等量差相等;

(3)等量的等倍量相等;(4)等量的等分量相等.

(1)(2)

(3)

(4) 几何表达式举例:

(1) ∵AC=DB

∴AC+CD=DB+CD

即AD=BC

(2) ∵∠AOC=∠DOB

∴∠AOC-∠BOC=∠DOB-∠BOC

即∠AOB=∠DOC

(3) ∵∠BOC=∠GFM

又∵∠AOB=2∠BOC

∠EFG=2∠GFM

∴∠AOB=∠EFG

(4) ∵AC= AB ,EG= EF

又∵AB=EF

∴AC=EG

4.等量代换: 几何表达式举例:

∵a=c

b=c

∴a=b 几何表达式举例:

∵a=c b=d

又∵c=d

∴a=b 几何表达式举例:

∵a=c+d

b=c+d

∴a=b

5.补角重要性质:

同角或等角的补角相等.(如图)

几何表达式举例:

∵∠1+∠3=180°

∠2+∠4=180°

又∵∠3=∠4

∴∠1=∠2

6.余角重要性质:

同角或等角的余角相等.(如图)

几何表达式举例:

∵∠1+∠3=90°

∠2+∠4=90°

又∵∠3=∠4

∴∠1=∠2

7.对顶角性质定理:

对顶角相等.(如图)

几何表达式举例:

∵∠AOC=∠DOB

∴ ……………

8.两条直线垂直的定义:

两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)

几何表达式举例:

(1) ∵AB、CD互相垂直

∴∠COB=90°

(2) ∵∠COB=90°

∴AB、CD互相垂直

9.三直线平行定理:

两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)

几何表达式举例:

∵AB∥EF

又∵CD∥EF

∴AB∥CD

10.平行线判定定理:

两条直线被第三条直线所截:

(1)若同位角相等,两条直线平行;(如图)

(2)若内错角相等,两条直线平行;(如图)

(3)若同旁内角互补,两条直线平行.(如图)

几何表达式举例:

(1) ∵∠GEB=∠EFD

∴ AB∥CD

(2) ∵∠AEF=∠DFE

∴ AB∥CD

(3) ∵∠BEF+∠DFE=180°

∴ AB∥CD

11.平行线性质定理:

(1)两条平行线被第三条直线所截,同位角相等;(如图)

(2)两条平行线被第三条直线所截,内错角相等;(如图)

(3)两条平行线被第三条直线所截,同旁内角互补.(如图)

几何表达式举例:

(1) ∵AB∥CD

∴∠GEB=∠EFD

(2) ∵AB∥CD

∴∠AEF=∠DFE

(3) ∵AB∥CD

∴∠BEF+∠DFE=180°

几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

一基本概念:

直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.

二定理:

1.直线公理:过两点有且只有一条直线.

2.线段公理:两点之间线段最短.

3.有关垂线的定理:

(1)过一点有且只有一条直线与已知直线垂直;

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

三 公式:

直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.

四 常识:

1.定义有双向性,定理没有.

2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.

3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论.

4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.

5.数射线、线段、角的个数时,应该按顺序数,或分类数.

6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.

7.方向角:

(1) (2)

8.比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.

9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.

以上就是初一数学人教版下册的全部内容,人教版七年级下册数学教案1 教学目标 知识与技能:通过学习,掌握三角形的内角和是180度,四边形的内角和是360度。能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

猜你喜欢