当前位置: 首页 > 所有学科 > 数学

七年级下数学教案,初一数学下册方案问题

  • 数学
  • 2023-12-01

七年级下数学教案?数学七年级下册教学教案1 教学目标 知识与技能:通过学习,掌握三角形的内角和是180度,四边形的内角和是360度。能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。那么,七年级下数学教案?一起来了解一下吧。

人教版七年级下册数学第九章教案

通过教学设计原理和方法的学习、运用,可以培养有关人员科学思维的习惯,提高他们科学地分析问题、解决问题的能力。下面是我为大家精心整理的七年级数学下册第十章教案,仅供参考。

七年级数学下册第十章教案(一)

10.2直方图(1)

【教学目标】

知识与技能:

了解组距、频数、频数分布等概念;学会对数据进行合理的分组处理. 过程与方法:

培养学生从数据中获取信息,并利用信息的能力.

情感态度与价值观:

体验数学在生活中的价值,增强学生对数学学习的兴趣.

【教学重难点】

教学重点:对数据进行合理分组,列频数分布表.

教学难点:组距的确定.

教具准备:小黑板

教法:探究

学法:合作交流

课时:第1课时

课型:新授课

授课时间:

【教学过程】

一、复习引入

在前面我们学习了哪几种描述数据的方法?它们各自的优点是什么?

前面学习的描述数据的方法主要有条形图、扇形图、折线图,他们各自的优点是??(教师描述)

二、新课

1.问题提出:为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:cm)如下,请同学们看书中P163收集的63个数据

.

选择身高在哪个范围的学生参加呢?为了使选取的参赛选手身高比较整齐,需要知道数据的分布情况:身高在哪个范围内的学生多,哪个范围内的学生少,因此得对这些数据进行适当的分组整理.

2.对数据分组整理的步骤

①计算最大与最小值的差

最大值?最小值=172?149=23(cm)

这说明身高的范围是23cm.

②决定组距和组数

把所有数据分成若干个组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距;例如:第一组从149∽152,这时组距=152?149=3,则组距离就是3.

那么将所有数据分为多少组可以用公式:

(最大值?最小值)÷组距=组数,如:(最大值?最小值)÷组距=

=7,则可将这组数据分为8组. = 注意:组距和组数没有固定的标准,要根据具体问题来决定,分组数的多少原则上100个数以内分为5∽12组较为恰当.

③列频数分布表

频数:落在各个小组内的数据的个数.

在各个小组的分布状况用表格表示出来就是频数分布表,如:对上述数据列频数分布就得到频数分布表

讨论交流:

1.你能从频数分布表中得到何种信息?

2.比较原始数据与频数分布表的各自优点.

师生共同归纳:所以身高在155≤x<158,158≤x<161,161≤x<164三个组的人数共有12+19+10=41(人),因此,可以从身高在155∽164cm(不含164cm)的学生中选队员.

三、巩固练习

完成教科书168页练习题(不画频数分布图)

四、课堂小结

本节课对你有什么帮助?你有何感想?

五、作业布置

必做题:习题10.2第2,3题(不画统计图)

选做题:习题10.2第5题

七年级数学下册第十章教案(二)

10.2直方图(2)

【教学目标】

知识与技能:

学会画频数分布直方图与折线图.

过程与方法:

能从直方图和折线图中获取信息.

情感态度与价值观:

体会频数分布直方图和折线图在生活实际中的运用,体验数学价值.

【教学重难点】

教学重点:画频数分布直方图与折线图.

教学难点:从直方图和折线图中获取信息.

教具准备:小黑板

教法:引导

学法:合作交流

课时:第2课时

课型:新授课

授课时间:

【教学过程】

一、情景创设,引入新课

在前面我们用条形、扇形、折线三种统计图形象直观地描述了数据,那么对于一组数据的频数分布用什么图象来描述呢?那就需要用到频数分布直方图.

二、新课

1.频数分布直方图的绘制

频数分布直方图主要是直观形象地能看出频数分布的情况,上节课我们对63名学生的身高作了数据的整理,并且也列出了频数分布表,现在我们利用频数分布表作出相应的频数分布直方图.

(1)以横轴表示身高,纵轴表示频数与组书的比值;如图:

(2)小长方形面积的意义

从上图中可以看出:小长方形的面积=组距×(频数/组距)=频数,因此小长方形的面积就是反映数据落在各个小组内的频数的大小.

(3)用简便方法画频数分布直方图

在等距离分组中,由于小长方形的面积就是该组的频数,因此在作频数分布直方图时,小长方形的高完全可以用频数来代替.

如上图可作成下图的形式:

2.用频数折线图来描述频数的分布情况

频数折线图来描述,首先取直方图中高一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点(与直方图左右相隔半个组距)如在上图中,在横轴上取(147.5,0)与(174.5,0),将所取的这些点依次用线段连接起来,就得到频数折线图

.

三、例题讲解:

教材P166例题:为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度如下表.(单位:

cm)

列出样本的频数分布表,画出频数分布直方图.解答:见课本

将上述例题中的组距改为0.5,重新分组列频数分布表,画频数分布直方图. 过程与例题解答过程类似,可让学生自己完成.

对比两种方法得出的结论,不难看出将数据分成12个组与分成7个组相对比,有一点误差,这是正常的,由此可以看出,分的组越多,分析得越细致,对总体的估计要准确一些.

四、布置作业

必做题:习题10.2第1题

选做题:习题10.2第4题

七年级数学下册第十章教案(三)

10.3课题学习 从数据谈节水(1)

【教学目标】

知识与技能:

使学生经历收集、整理、分析数据,得出结论的过程,从中体会节水的重要性.

过程与方法: 通过分析数据,得出结论,让学生体会用数据分析问题的过程,提出合理化建议,感受数学给生活带来的价值.

情感态度与价值观:

通过具体的数据,使学生了解节水的重要性.

【教学重难点】

教学重点:学会收集、分析数据,从中得出结论,并能针对有关问题,给出解决办法.

教学难点:如何找到合理解决缺水问题的办法.

教具准备:多媒体

教法:引导

学法:合作交流

课时:第1课时

课型:新授课

授课时间:

【教学过程】

一、新课引入

资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片 问题:(1)看了这些图片,你有哪些感受?

(2)你了解世界及我国有关水资源的现状吗?

二、探究新知

活动一:阅读课本的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

(1)地球上的水资源和淡水资源分布情况怎么样?

(2)我国农业和工业耗水量情况怎么样?

(3)我国不同年份城市生活用水的变化趋势怎么样?

(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?

学生阅读资料,通过小组合作、讨论的形式完成活动一. 活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?

(4)如果每人每天节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?

七年级数学下册第十章教案相关文章:

1. 北师大版七年级数学下册教案

2. 北师大七年级数学下册教案

3. 北师大七年级数学下册教案

4. 七年级下册第五章数学教案

5. 北师大版七年级下册数学教案

七年级下册数学学什么

七年级数学下册《相交线与平行线》教案

一、 学生起点分析

学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。

学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

二、教学任务分析

针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。

七年级下数学教案的内容

初中七年级数学教案设计范例精选

教学设计 是一个设计并实现学习目标的过程,它遵循学习效果最优的原则,是课件开发质量高低的关键所在。以下是我为大家准备的初中数学教案设计范例,欢迎大家前来参阅。

初中数学教案设计范例【1】

《角平分线的性质》

(一)创设情境 导入新课

不利用,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流 探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。

七年级下册数学人教版教案

这篇《七年级下学期数学教案:射线、线段》是为大家整理的,希望对大家有所帮助。以下信息仅供参考!!!

教学设计示例

一、素质教育目标

(一)知识教学点

1.了解直线、射线和线段等概念的区别.

2.理解射线及其端点、线段及其端点、延长线等概念.

3.掌握射线、线段的表示方法.

(二)能力训练点

对学生继续进行几何语言和识图能力的训练,使学生逐步熟悉几何语句.准确区别直线、射线和线段等几种几何图形.

(三)德育渗透点

通过射线、线段的概念、性质、画法的教学,使学生体验到从实践到理论,以理论指导实践的认识过程,潜移默化地影响学生,形成理论联系实践的思想方法,培养学生勤于动脑,敢于实践的良好习惯.

(四)美育渗透点

通过射线、线段的具体实例体验形象美;通过射线、线段的图形体验几何中的对称美.

二、学法引导

1.教师教学:直观演示、阅读理解与尝试指导相结合.

2.学生学法:以直观形象来理解概念,以动手操作体会画法及性质的比较.

三、重点·难点·疑点及解决办法

(一)重点

线段、射线的概念及表示方法.

(二)难点

直线、射线、线段的区别与联系.

(三)疑点

直线、射线、线段的区别与联系.

(四)解决办法

通过学生小组内的讨论,针对直线、射线的概念、图形性质进行对比归类,教师根据学生回答整理,从而解决三者的区别与联系这一疑、难点.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片(软盘)、直尺.

六、师生互动活动设计

1.教师引导学生通过生活知识,阅读书本相应段落、自己动手操作等,使学生自己去体会、发现射线、线段的概念、表示、画法等.

2.通过反馈练习,及时掌握学生的学习情况.

七、教学步骤

(一)明确目标

通过本节课教学,应使学生理解和掌握射线、直线的概念和表示方法及与直线之间的关系,通过相关画图题,增强对知识点的认识,培养学生动手能力.

(二)整体感知

通过教师指导,学生积极思维,主动发现的模式进行教学,再辅以练习巩固.

(三)教学过程

创设情境,引出课题

师:在日常生活中,我们常常见到直线的实例,上节我们也举出了很多实例.我们知道,直线是向两方无限延伸的.但在日常生活中,还有这样的现象:手电筒或探照灯射出的光束,只向一个方向延伸(可用电脑显示),这就是我们要研究的一种新的几何图形—射线.

板书课题:

[板书]1.2射线、线段

探索新知

1.射线的概念

师:通过演示,我们发现射线向一方延伸.其实,它是直线的一部分,我们给它一个定义(板书射线的定义).

[板书]射线:直线上的一点和它一旁的部分叫做射线,这个点叫做射线的端点.

如图1,直线 上的一点 和它一旁的部分就是一条射线,点 就是这条射线的端点.

图1

【教法说明】关于射线,教师可更形象地解释:“射线”就是像手电筒或探照灯“射”出的光束一样,因此,取名“射线”.这样可使意义与名词紧密联系起来,让学生对此印象深刻.对于定义只简单提一下;不作发挥,并告诉学生:我们以后还要学很多图形的定义.

2.射线的表示方法

学生活动:学生阅读课本第13页,射线的表示方法这一自然段,并在练习本上表示一条射线,并注意射线的表示方法中应注意什么.

【教法说明】学生看书能看懂的问题,教师就给学生一个机会,让学生自己支配自己,而不是由教师牵着鼻子走.

学生看书后回答射线的表示方法,教师演示画出图形.

(1)用射线的端点和射线上的另一点表示,但端点字母要写在前面.如图2,记作:射线 .

图2

(2)射线也可以用一个小写字母表示.如图3: 记作射线 .注意“射线”两个字要写在 的前面.

反馈练习:〈出示投影1〉

如图3:射线 与射线 是同一条射线吗?射线 与射线 是同一条射线吗?射线 与射线 是同一条射线吗?

图3

【教法说明】通过以上练习,强调射线的方向性.端点相同,方向相同的射线才是同一条射线.

3.射线的画法

由学生看书后,在练习本上练习画图,找同学到黑板上画一条射线并表示出来.由学生说出画射线的要领.如图,画射线 一要画出射线端点 ;二要画出射线经过点 ,并向 一旁延伸的情况.请同学们说出:射线 与射线 的端点,并画出这两条射线.

4.线段的概念

教师由射线定义引出线段定义,直线上的一点和它一旁的部分叫射线.我们研究了其表示方法,画法.那么,在直线上取两点又该怎么样呢?画出图形 .

我们叫这两点间的部分为线段.(板书定义)

[板书]线段:直线上两个点和它们之间的部分叫做线段.这两点叫做线段的端点.如:长方体、正方体的棱等就是线段.

【教法说明】介绍线段定义后,可让同学们说出我们周围线段的实例,以调动其积极性,发挥其想像力.同时,也帮助理解线段的概念.

5.线段的表示方法

师:像直线和射线一样,线段也有两种表示法.你能依照直线和射线的表示方法,试着说出线段的两种表示方法吗?

同学之间相互讨论,最后得出线段的两种表示方法:如图4, 、 为端点的线段,可以记作线段 或线段 ;也可以记作线段 .

图4

【教法说明】有直线、射线表示方法的基础,对线段的表示方法学生能够举一反三,所以教师不必强加给他们,可以让学生自己想出其表示方法,体会其中的成就感.教学中一定注意,只要是学生自己能够理解、能够通过自身垢体会悟出的知识,教师就不要一味地“灌”,要使学生学会自我解决问题的方法.学生思考:线段 和线段 是同一条线段吗?

6.线段的画法

学生自己画线段,体会其画法,总结画线段的要领.

学生活动:在练习上画线段,同桌讨论画线段的方法和应注意的问题.根据学生回答情况,教师归纳注意问题.

(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(在这里可提问学生为什么.学生回答会说出:向两方延伸则成了直线,向一方延伸则成了射线.定会领略出射线、直线、线段的区别.)

(2)以后我们说“连结 ”就是指画以 、 为端点的线段.说明:“连结”是几何的专用名词,专指画出两点间的线段的意思.

7.直线、射线、线段的区别与联系

师:上节我们研究了直线的有关问题,这节我们又研究了射线和线段,通过我们的学习,你能试着总结一下直线、射线、线段三者的区别与联系吗?

学生活动:同桌间相互讨论,在练习本上小结三者的区别与联系.

【教法说明】学生总结一定不会有层次,但要放手让他们讨论,使学生学会归纳总结的方法.这也是学习几何中常用的方法,对一些概念、图形性质等往往需要对比归类,发现它们之间的相同点和不同点.教师从开始就要注意,引导学生学会对所学知识进行归纳、对比的学习方法.

根据学生回答教师整理:

联系:射线、线段都是直线的一部分,线段是直线的有限部分.

区别:直线无端点,长度无限,向两方无限延伸.射线只有一个端点,长度无限,向一方无限延伸.线段有两个端点,长度有限.

反馈练习(投影出示)

【教法说明】对于练习中的第1题要让学生把图形和几何的语句统一起来;第2题也可问以 为端点有几条射线;第3题要注意所填的词应恰当.

(四)总结、扩展

由学生填写下表,归纳本节知识点.

八、布置作业

看本节所讲内容,预习下节内容.

初中数学导与练教案七下

初一下学期数学平行线教案5篇

七年级数学老师应该引导学生发现数学课的精彩之处,用心去体会、揣摩,发现其中的美。每一个七年级数学老师都应该在课前写一篇七年级数学教案,那么你知道如何写七年级数学教案?你是否在找正准备撰写“初一下学期数学平行线教案”,下面我收集了相关的素材,供大家写文参考!

初一下学期数学平行线教案篇1

教学目标:

1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.

2、能用符号语言写出一个命题的题设和结论.

3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.

教学重点:证明的步骤与格式.

教学难点:将文字语言转化为几何符号语言.

教学过程:

一、复习提问

1、命题“两直线平行,内错角相等”的题设和结论各是什么?

2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)

3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)

二、例题分析

例1、 证明:两直线平行,内错角相等.

已知:a∥b,c是截线.

求证:∠1=∠2.

分析:要证∠1=∠2,

只要证∠3=∠2即可,因为

∠3与∠1是对顶角,根据平行线的性质,

易得出∠3=∠2.

证明:∵a∥b(已知),

∴∠3=∠2(两直线平行,同位角相等).

∵∠1=∠3(对顶角相等),

∴∠1=∠2(等量代换).

例2、 证明:邻补角的平分线互相垂直.

已知:如图,∠AOB+∠BOC=180°,

OE平分∠AOB,OF平分∠BOC.

求证:OE⊥OF.

分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.

三、课堂练习:

1、平行于同一条直线的两条直线平行.

2、两条平行线被第三条直线所截,同位角的平分线互相平行.

四、归纳小结

主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.

五、布置作业

课本P1435、(2),7.

六、课后思考:

1、垂直于同一条直线的两条直线的位置关系怎样?

2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?

3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?

初一下学期数学平行线教案篇2

教学目的

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

以上就是七年级下数学教案的全部内容,初一下学期数学平行线教案篇1 教学目标: 1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤. 2、能用符号语言写出一个命题的题设和结论. 3、。

猜你喜欢