高斯的数学故事50字?一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。那么,高斯的数学故事50字?一起来了解一下吧。
从古至今,名人很多,那么他们的故事你都了解吗?下面是我为大家收集的伟大的数学天才高斯名人故事,仅供参考,希望能够帮助到大家。
伟大的数学天才高斯名人故事 篇1
高斯(1777~1855)是德国数学家、物理学家和天文学家,英国皇家学会会员。
高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。
少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。
1801年,他发表的《算术研究》,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。
同时作为一个物理学家,他与威廉。韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。
高斯30岁时担任了德国着名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)着作,提出了404项科学创见,完成了4项重要发明。
写作思路:写作时从大处着手,尽量阐述自己的看法或者思想,全面详细的解答问题,并且紧扣问题的中心,把要表达的内容完整表述出来。
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
写作方式:
1、确定中心,写出深意。我们要着于挖掘所写事件中含有的生活哲理或找出它闪光的地方,反复思考,确定文章的中心思想。即善于从普通的小事中写出深意来。
2、文章的六要素要交待清楚。一件事情的发生,离不开时间、地点、人物、事情的起因、经过和结果这六方面,即常说的“六要素”,只有交待清楚这几方面,才能使读者对所叙述的事,有个清楚、全面的了解。
3、言之有序,条理要清楚。根据所述时间选择合理的顺序来安排材料。一般叙事顺叙、倒叙和插叙三种。
(1)高斯念小学的时候,有一次在老师教完加法后,出了一道题目要同学们算算看,题目是:1+2+3+ .+97+98+99+100 = 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来高斯已经算 出来了,高斯告诉大家他算出的答案:5050,从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为数学天才!
(2)陈景润.他在一间破旧的小屋里,用掉几麻袋的草稿纸,证明了离哥达巴赫猜想(1+1)最接近的(1+2).
高斯在上小学时,小学老师对学生很不负责任.这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字.老师也算过,答案也是5050.高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了.
华罗庚因病左腿残疾后,走路要左腿先画一个大圆圈,右腿再迈上一小步.对于这种奇特而费力的步履,他曾幽默地戏称为“圆与切线的运动”.在逆境中,他顽强地与命运抗争,誓言是:“我要用健全的头脑,代替不健全的双腿!”
(3)16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语
(4)古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。
关于数学名人小故事50字,为您整理了以下几个,希望可以帮助到您
一、高斯念小学的时候,有一次在老师教完加法后,出了一道题目要同学们算算看,题目是:1+2+3+.+97+98+99+100=老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来高斯已经算出来了,高斯告诉大家他算出的答案:5050,从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为数学天才!
二、古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
三、伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
四、阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。
数学家高斯的故事 篇1
高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有数学王子之称。
他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。
高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。
以上就是高斯的数学故事50字的全部内容,故事:德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。有一天高斯的数学教师情绪低落的一天。