数学配方法的公式?数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。那么,数学配方法的公式?一起来了解一下吧。
数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。
这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。
举例如下:
2x²+8x+5=2(x²+4x)+5
=2(x²+4x+2²)+5-8
=2(x+2)²-3
扩展资料
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
例——解方程:2x²+6x+6=4
分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。
解:2x²+6x+6=4
<=>(x+1.5)²=1.25
x+1.5=1.25的平方根
数学配方法公式为:(a+b)²=a²+2ab+b²。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab+b,将这个公式灵活运用,可得到各种基本配方形式,如:a+b=(a+b)-2ab=(a-b)+2ab;a+ab+b =(a+b)-ab=(a-b)+3ab= (a+b) 。
配方法
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
应用
1、因式分解
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力。
因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。
配方法:是解一元二次方程的一种方法,配方法就是将一元二次方程由一般式ax²+bx+c=0化成(x+m)²=n,然后利用直接开平方法计算一元二次方程的解的过程,其过程可总结为五步:一消,二配,三移,四开,五计算结果。配方法过程较,一般解一元二次方程时不建议使用此方法,但是解应用题或者一元二次图像的时候又很重要。在公式法中用到的求根公式也可由此方法得到,配方法公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²,a²+b²+c²+2ab+2ac+2bc=(a+b+c)²。
如果二次项系数不为一,先化为一,之后把常数项移到等号右边,最后在等号两边都加上一次项系数一半的平方,就可以了。
数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。
这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。
举例如下:
2x²+8x+5=2(x²+4x)+5
=2(x²+4x+2²)+5-8
=2(x+2)²-3
扩展资料
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
例——解方程:2x²+6x+6=4
分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。
解:2x²+6x+6=4
<=>(x+1.5)²=1.25
x+1.5=1.25的平方根
以上就是数学配方法的公式的全部内容,数学配方法公式为:(a+b)²=a²+2ab+b²。配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab+b,将这个公式灵活运用,可得到各种基本配方形式。