当前位置: 首页 > 所有学科 > 数学

2017高考最后一卷数学,2017年高考文科数学全国二卷

  • 数学
  • 2024-03-02

2017高考最后一卷数学?这题不难,你应该能做出来的。不要有懒惰思想。我只能说你这样成绩是不会提高的,另外也没动力,自己想想有什么让你有动力的事,不管是为自己还是为了自己喜欢的人!不要求答案,自己做最好。作业嘛作业,那么,2017高考最后一卷数学?一起来了解一下吧。

2018高考数学全国一卷

高考数学最后一题特别难,我脑袋想破了,现在还没有想出来,只能说出题的老师。真的太厉害了,可以这样的为难我。

2019年高考全国二卷数学

由前面推导可知,即由题设可知根的判别式=16(4K^2-m^2+1)>0,后面又求得k=-(m+1)/2

这样将k代入进去,4K^2-m^2+1>0

4ⅹ[-(m+1)/2]^2-m^2+1>0

化简得2m+2>0得m>-1

所以当且仅当m>-1时,根的判别式﹥0就是这样得来的。

2019高考语文全国二卷

高中数学合集

1znmI8mJTas01m1m03zCRfQ

?pwd=1234

1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

2017全国乙卷理科数学

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ

20.(12分)

已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae²^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选考题:共10分。

2017年全国高考一卷数学

难,我是2017年,也就是今年一考生,自我感觉要比往年数学高考题难度明显上升,有兴趣的朋友可以看一下去年(2016年)数学全国卷,对比今年,例如,去年高考,统计和以往的数形结合,今年则完全变成纯属汉字,很难理解题型意思,难道很多考生,去年还有复数,今年选择完全没有复数,总之,今年数学成绩不会比往年数学好到哪里!

以上就是2017高考最后一卷数学的全部内容,(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网 (2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件。

猜你喜欢