单墫初中数学指津?一、出版时间不同 1、人教版初中数学:是2012年人民教育出版社出版的图书。2、北师大版初中数学:是2009年11月由北京师范大学出版社出版的图书。二、作者不同 1、人教版初中数学:作者是吴江媛。2、北师大版初中数学:作者是人民教育出版社、课程教材研究所中学数学课程教材研究开发中心。三、那么,单墫初中数学指津?一起来了解一下吧。
初中数学知识 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质: ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性. ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理: ⑴边边边():三边对应相等的两个三角形全等. ⑵边角边():两边和它们的夹角对应相等的两个三角形全等. ⑶角边角():两角和它们的夹边对应相等的两个三角形全等. ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等. 4.角平分线: ⑴画法: ⑵性质定理:角平分线上的点到角的两边的距离相等. ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法: ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过分析,找出由已知推出求证的途径,写出证明过程. 初中数学必备知识 1.基本概念: ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形. ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称. ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线. ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角. ⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质: ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质: ①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的'点的坐标性质 初中数学重点知识 一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。
主要有三个大方面1、代数:以有理数,整式,分式为基础!有理数对应有理数运算,科学记数法,近似值,实数(平方立方),二次根式等。2、几何:以三角形,圆为核心,穿插直线,射线,线段,平行线,坐标系,图形变换!三角形有关线段(中线,角平分线),全等(相似)三角形以及特殊三角形(等腰三角形,等边三角形,直角三角形性质)和勾股定理,三角函数(解三角形)等若干计算。3、统计概率:数据收集,处理,分析,涉及直方图,扇形图,中位数,众数,平均数,方差等!简单的概率计算,树形图!初中数学特点一般来说,初中数学具有以下明显的特点:
一是,技术术语的明显增加,例如函数、字符串、集合等。
二是,绕的" 弯儿" 明显增多了, 例如,初中数学题常常会把已知条件隐藏起来, 让同学们经过思考、分析后才能得出。
三是,“陷阱”越来越多。例如,在一些数学问题中经常存在一些无用的已知条件。
揭示数学界的传奇人物:单墫,他的数学教育之路如何塑造“宗师”之名?
单墫,这位在数学教育领域独树一帜的人物,他的故事并非仅仅停留在学术研究的范畴。他的早年经历虽然鲜为人知,但可以从数学竞赛的那些事儿公众号的一篇文章中窥见一二,那里记录了中国首批博士之一——翟天临获取学位的过程,这也许能为我们理解单墫的成长背景提供一些线索。
单墫先生的深厚数学功底并非偶然,他不仅在学术上熠熠生辉,更在教育领域独占鳌头。他曾多次执掌中国国家数学奥林匹克代表队的教鞭,担任总教练和领队,他的影响力超越了单纯的理论研究,深入到了培养未来数学之星的实战层面上。
一次亲耳聆听单墫先生授课的经历,让我深刻感受到他的教学风格。他强调互动,鼓励学生积极参与,让课堂成为知识的碰撞场。即使是面对复杂的难题,他也总能化繁为简,以通俗易懂的方式引导学生深入理解。
“数学宗师”这一尊号,与其说是对他数学研究的赞誉,不如说是对他教育贡献的高度肯定。单墫先生在数学奥林匹克竞赛的教育工作中,无疑扮演了推动者和导师的角色,他不仅点燃了无数青少年对数学的热情,更是塑造了一代代数学家的坚实基础。
初中数学知识点总结
一、基本知识
一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。
★重点★ 实数的有关概念及性质,实数的运算
内容提要
一、 重要概念
1.数的分类及概念 数系表:
说明:“分类”的原则:
⑴相称(不重、不漏)
⑵有标准
2.非负数:正实数与零的统称。(表为:x≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:
①定义及表示法
②性质:A.(a≠±1);
B.中,a≠0;
C. 01; a>1时,<1;
D.a与乘积为1。
4.相反数:
①定义及表示法
②性质: A. a≠0时,a≠-a;
B.a与-a在数轴上的位置;
C.和为0,商为-1(0除外)。
5.数轴:
①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:奇数:2n-1 偶数:2n(n为自然数)
7.绝对值:
①定义(两种):
代数定义:正数和0的绝对值是它本身,负数的绝对值是它的相反数.
互为相反数的两个数的绝对值相等
a的绝对值用“|a |”表示.读作“a的绝对值”.
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;
③数a的绝对值只有一个;
④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
以上就是单墫初中数学指津的全部内容,三角形有关线段(中线,角平分线),全等(相似)三角形以及特殊三角形(等腰三角形,等边三角形,直角三角形性质)和勾股定理,三角函数(解三角形)等若干计算。3、统计概率:数据收集,处理,分析,涉及直方图,扇形图,中位数,众数,平均数,方差等!简单的概率计算,树形图!初中数学特点一般来说。