当前位置: 首页 > 所有学科 > 数学

数学期望的定义,什么叫做数学期望

  • 数学
  • 2023-07-23

数学期望的定义?数学期望(mean)是最基本的数学特征之一,运用于概率论和统计学中,它是每个可能结果的概率乘以其结果的总和。它反映了随机变量的平均值。需要注意的是,期望并不一定等同于常识中的“期望”——“期望”未必等于每一个结果。那么,数学期望的定义?一起来了解一下吧。

数学中期望E的定义

数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。

数学期望描述的是一个随机变量取值的集中位置,也就是随机变量的概率加权平均值。只有在大量试验基础上才能体现出来的一个规律性。

期望值是基础概困悄率学的升级版,是所有管理决策的过程中,尤其是在金融领域是最实用的统计。某个事件(最初用来描述买彩票)的期望值即收益,实际上就是所有不同结果的和,其磨备中每个结果都是由各自的概率和收益相乘而来。

扩展资料:

数学期望的故事:

在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?

用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。

因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。

数学期望的六个公式

数学期望是试验中每次可能结果的概率乘以其结果的总和。

计算公式:

1、离散型:

离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数基则据X1、X2、X3……Xn出现的频率高世迟f(Xi),则:

2、连续型:

设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值

为随机变量的数学期望,记为E(X)。即

扩展资料

例题:

在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:

(1)取出的3件产品中一等品件数x的分布列和数学期望;

(2)取出的3件产品中一等品件数多于二等品件数的概率。

解:

x的数学期望E(x)=0*7/24+1*21/40+2*7/40+3*1/120=9/10

参考资料来源:百度搜锋李百科-数学期望

数学期望的性质有哪些

E(x)指数学期望。

数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果虚仔丛的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当你下注时戚盯,期望赢得多少钱。

期望值并不差樱一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

扩展资料

应用:

1、随机炒股

随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。

3、价值投资

由于价值低估买,所以胜率比较高,且价值投资都预留安全边际,也就是向上的空间巨大,而下跌空间有限,所以数学期望值一定为正。

参考资料来源:-数学期望

数学期望E(X)

数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差)。

期望就是一种均数激烂,可以类似理解为加权平均数,x相应的概率就是它的权,所以ex就为各个xi×pi的和。dx就是一种方差,即是x偏差的加权平均,各个(xi-ex)的平方再乘以相应的pi之总和。dx与ex之间还有一个技巧公式需要记住,就是dx=e(x的平方)-(ex)的平方。

扩展资料

需要注意的是,期望值并不一定脊型等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律规定,随着重复次数接近无穷明野漏大,数值的算术平均值几乎肯定地收敛于期望值。

全概率公式的定义

数学期望(mean)是最基本的数学特征之一,运用于概率论和统计学中,它是每个可能结果的概率乘以其结果的总和。它反映了随机变量的平均值。

需要注意的是,期望并不一定等同于常识中的“期望”——“斗卖期望”未必等于每一个结果。期望值是变量输出值的平均值。期望不一定包含在变量的输出值集合中。

大数定律规定,当重复次数接近无穷大时,数值的算术平均值几乎肯定会收敛到期望值。

扩展资衡困料:

应用:

1、经济决策

假设超市销售某一商品,周需求x的取值范围为10-30,商品的采购量取值范围为10-30。超市每售出一件商品可获利500元。如果供过于求,就会降价,每加工一件商品就要亏损10元。0元;如果供过于求,可以从其他超市转手。此咐销念时,超市商品可获利300元。超市在计算进货量时,能得到最大的利润吗?得到最大利润的期望值。

分析:由于商品的需求(销售量)x是一个随机变量,它在区间[10,30]上均匀分布,而商品的销售利润值y也是一个随机变量。它是x的函数,称为随机变量函数。问题涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,求解该问题的过程是确定y与x之间的函数关系,然后求出y的期望e(y),最后用极值法求出e(y)的最大点和最大值。

以上就是数学期望的定义的全部内容,期望意思是指人们对某样东西的提前勾画出的一种标准,达到了这个标准就是达到了期望值。数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。对于EX来说。

猜你喜欢