数学的产生?产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题 数学的发展史大致可以分为四个时期。1、第一时期 数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,那么,数学的产生?一起来了解一下吧。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分。
扩展资料:
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
数学最初是从结绳记事开始的。大约在三百万年前,人类还处于茹毛饮血的原始时代,以采集野果、围猎野兽为生。这种活动常常是集体进行的,所得的“产品”也平均分配。这样,古人便渐渐产生了数量的概念。他们学会了在捕获一头野兽后用一个石子、一根木条来代表;或者用在绳子上打结的方法来记事、记数。这样,在原始社会人们的眼光中,一个绳结就代表一头野兽,两个结代表两头……,或者一个大结代表一头大兽,一个小结代表一头小兽……。数量的观念就是在这些过程中逐渐发展起来的。随着捕获手段的提高,所获的野兽越多,绳子的结越多,需要的数目也越大。
在距今大约五六千年以前,沿非洲的尼罗河出现了一个伟大的文明社会——埃及。埃及人较早地学会了农业生产。尼罗河每年7月定期泛滥,淹没大片农地,11月洪水逐渐退落。埃及人通过长期观察,注意到当天狼星和太阳同时出没的时候,正是洪水将至的预兆。还发现,这种现象大约365天重复一次。这样,埃及人就选择在洪水泛滥之后留下的肥沃淤泥上下种,待6月洪水来临之前收割,以获得好的收成。这是通过天文观测进行农业生产的结果,其中也包含了数学知识的应用。另一方面,古埃及的农业制度,是把同样大小的正方形土地分配给每一个人的,租用的人每年把他的收成提取一部分给土地所有者——国王。
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。
从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)
直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。
数学是研究现实世界空间形式和数量关系的一门科学。它包括算术、代数、几何、三角、解析几何、微积分等等。小学数学是指算术和简易代数及几何初步知识。
数学科学伴随着人类社会的发展,也有它自身发展的历程。前苏联科学院院士A·H·柯尔莫戈洛夫曾把数学发展史划分为四个阶段:第一个阶段的前期产生自然数概念、计算方法和简单的几何图形,后期出现数的写法、数的算术运算、某些几何图形的运用,解答简单的代数题目;第二个阶段逐渐形成了初等数学的分支,即算术、代数、几何、三角;第三个阶段建立了解析几何、微积分、概率论等学科;第四个阶段出现计算机学科,以及应用数学的众多分支、纯数学的若干问题的重大突破等。
我国数学在世界数学发展史上,有它卓越的贡献。早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。
在新石器时期的彩陶钵上,有多种刻画符号,其中丨、、、×、+等,很可能是我国最早的记数符号。产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量工具。
以上就是数学的产生的全部内容,数的产生及发展过程:数──自然科学之父,起源于原始人类用来数数计数的记号形成自然数“数”的符号,是人类最伟大发明。若干年以前,人类的祖先为了生存,往往几十人在一起,过着群居的生活。他们白天共同劳动,搜捕野兽、飞禽或采集果薯食物;晚上住在洞穴里,共同享用劳动所得。