目录九年级上册社会精编 9年级上册科学作业本答案浙教版 四年级上册道法试卷答案 九年级上社会精编答案 七年级上册社会精编答案
【参考答案】带液
15、原式=(a/b)b²√(ab)×(-3a/2)√b×3√(a/b)
=ab√(ab)×(-9/2)a√a
=(-9a²b/2)√(a²贺竖b)
=-4.5a³b√b
16、原式=[√y(√x-√y)/(x-y)]-√(xy)+[x√y(√x-√y)/(x-y)]+√(xy)
=[(√(xy)-y)/(x-y)]+[(x√(xy)-xy)/(x-y)]
=[(1+x)√(xy)-xy-y]/(x-y)
17、a=√2
√2x-√2<2√2
√2x<3√2
x<3
∴x=1、2
18、∵△BCD是等边三角形,∠DBC=60°
∴∠DBA=30°
∴BD=2AD=2√2
AB=√6
∴周长为2×2√2+√2+√6=5√2+√6
19、①原式=1+(1/2)-[1/(2+√5)]=3.5-√5
②√{1+[1/(n-1)²]+(1/n²)}
=1+[1/(n-1)]-[1/(n-1+n)]
=1+[1/(n-1)]-[1/(2n-1)]
=(2n²-2n+1)/(2n²-3n+1)
20、方法很多:举例如下:
①将6个正方形排成1行或1列,得到长为12×6、宽为12的长方形,
对角线为√(72²+12²)=12√37cm
②将6个蠢拍物正方形排成2排,每排3个,得到长为12×3、宽为12×3的长方形,
对角线为√(36²×2)=36√2
11、原式=8√6-18√6+12√6-10√6
=-8√6
12、原式=-(√2-√3)²
=2√6-5
13、原式=6×(1/2)÷5√2
=3÷5√2
=(3/5)×(√2/2)
=0.3√2
14、原式=2b×(1/b)×√(ab)+3×√(ab)-4a×(1/a)√(ab)-3√(ab)
=2√(ab)+3√(ab)-4√(ab)-3√(ab)
=-2√(ab)
在每一次数学期末考试结束后,要学会反思,这样对于九年级的数学知识才会和州掌握熟练。以下是我为你整理的九年级圆棚培数学上册期末试题,希望对大家有帮助!
九年级数学上册期末试题
一、选择题(本题共32分,每小题4分)
下面各题均有四个选项,其中只有一个是符合题意的.
1. 经过点P( , )的双曲线的解析式是( )
A. B.
C. D.
2. 如图所示,在△ABC中,DE//BC分别交AB、AC于点D、E,
AE=1,EC=2,那么AD与AB的比为
A. 1:2 B. 1:3
C. 1:4 D. 1:9
3. 一个袋子中装有6个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为
A. B. C. D.
4. 抛物线 的顶点坐标是
A. (-5,-2) B.
C. D. (-5,2)
5. △ABC在正方形网格纸中的位置如图所橘唯示,则 的值是
A. B.
C. D.
6. 要得到函数 的图象,应将函数 的图象
A.沿x 轴向左平移1个单位 B. 沿x 轴向右平移1个单位
C. 沿y 轴向上平移1个单位 D. 沿y 轴向下平移1个单位
7. 在平面直角坐标系中,如果⊙O是以原点为圆心,以10为半径的圆,那么点A(-6,8)
A. 在⊙O内 B. 在⊙O外
C. 在⊙O上 D. 不能确定
8.已知函数 (其中 )的图象如图所示,则函数 的图象可能正确的是
二、填空题(本题共16分,每小题4分)
9. 若 ,则锐角 = .
10. 如图所示,A、B、C为⊙O上的三个点, 若 ,
则∠AOB的度数为 .
11.如图所示,以点 为圆心的两个同心圆中,大圆的弦 是小圆的切线,
点 为切点,且 , ,连结 交小圆于点 ,
则扇形 的面积为 .
12. 如图所示,长为4 ,宽为3 的长方形木板在桌面上做
无滑动的翻滚(顺时针方向),木板上点A位置变化为 ,
由 此时长方形木板的边
与桌面成30°角,则点A翻滚到A2位置时所经过的路径总长度为 cm.
三、解答题(本题共30分,每小题5分)
13. 计算:
14. 已知:如图,在Rt△ABC中,
的正弦、余弦值.
15.已知二次函数 .
(1)在给定的直角坐标系中,画出这个函数图象的示意图;
(2)根据图象,写出当 时 的取值范围.
16. 已知:如图,AB是⊙O的弦,半径OC、OD分别交AB
于点E、F,且AE=BF.
求证:OE=OF
17.已知:如图,将正方形ABCD纸片折叠,使顶点A落在边CD上的
点P处(点P与C、D不重合),点B落在点Q处,折痕为EF,PQ与
BC交于点G.
求证:△PCG∽△EDP.
18.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余都相同),其中黄球有1个,白球有2个.第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画树状图的方法求两次都摸到黄球的概率.
四、解答题(本题共20分,每小题5分)
19.已知:如图,在平面直角坐标系xoy中,直线 与
x轴交于点A,与双曲线 在第一象限内交于点B,
BC垂直x轴于点C,OC=2AO.求双曲线 的解析式.
20.已知:如图,一架直升飞机在距地面450米上空的P点,
测得A地的俯角为 ,B地的俯角为 (点P和AB所在
的直线在同一垂直平面上),求A、B两地间的距离.
21.作图题(要求用直尺和圆规作图,不写出作法,
只保留作图痕迹,不要求写出证明过程).
已知:圆.
求作:一条线段,使它把已知圆分成面积相等的两部分.
22.已知:如图,△ABC内接于⊙O,且AB=AC=13,BC=24,
PA∥BC,割线PBD过圆心,交⊙O于另一个点D,联结CD.
⑴求证:PA是⊙O的切线;
⑵求⊙O的半径及CD的长.
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23. 已知:在 中, ,点 为 边的中点,点 在 上,连结 并延长到点 ,使 ,点 在线段 上,且 .
(1)如图1,当 时,
求证: ;
(2)如图2,当 时,
则线段 之间的数量关系为;
(3)在(2)的条件下,延长 到 ,使 ,
连接 ,若 ,求 的值.
24.已知 均为整数,直线 与三条抛物线 和 交点的个数分别是2,1,0,若
25.已知二次函数 .
(1)求它的对称轴与 轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,如图所示,设平移后的抛物线的顶点为 ,与 轴、 轴的交点分别为A、B、C三点,连结AC、BC,若∠ACB=90°.
①求此时抛物线的解析式;
②以AB为直径作圆,试判断直线CM与此圆的位置关系,并说明理由.
九年级数学上册期末试题答案
阅卷须知:
1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
3.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
一、选择题(本题共32分,每小题4分)
题 号 1 2 3 4 5 6 7 8
答 案 B B D C A D C D
二、填空题(本题共16分,每小题4分)
题 号 9 10 11 12
答 案 60° 80°
三、解答题(本题共30分,每小题5分)
13. 解:原式 ………………………………………………………3分
…………………………………………………………5分
15.(1)示意图正确 ……………………………………………………………………3分
(2)当y < 0时,x的取值范围是x<-3或x>1; ……………………………5分
16. 证明:过点O作OM⊥AB于M ……………………………………1分
∴AM=BM ……………………………………3分
∵AE=BF,
∴EM=FM …………………………4分
∴OE= ……………………………………5分
18.解:
依题意,列表为:
黄 白 白
黄 (黄,黄) (黄,白) (黄,白)
白 (白,黄) (白,白) (白,白)
白 (白,黄) (白,白) (白,白)
由上表可知,共有9种结果,其中两次都摸到黄球的结果只有1种,
所以两次都摸到黄球的概率为 . …………………5分
四、解答题(本题共20分,每小题5分)
19.解:在 中,令y=0,得
.
解得 .
∴直线 与x轴的交点A的坐标为:(-1,0)
∴AO=1.
∵OC=2AO,
∴OC=2. …………………2分
∵BC⊥x轴于点C,
∴点B的横坐标为2.
∵点B在直线 上,
∴ .
∴点B的坐标为 . …………………4分
∵双曲线 过点B ,
∴ .
解得 .
∴双曲线的解析式为 . …………………5分
21.
AB为所求直线. ……………………5分
22.
证明:(1)联结OA、OC,设OA交BC于G.
∵AB=AC,
∴
∴ AOB= AOC.
∵OB=OC,
∴OA⊥BC.
∴ OGB=90°
∵PA∥BC,
∴ OAP= OGB=90°
∴OA⊥PA.
∴PA是⊙O的切线. …………………2分
(2)∵AB=AC,OA⊥BC,BC=24
∴BG= BC=12.
∵AB=13,
∴AG= . …………………3分
设⊙O的半径为R,则OG=R-5.
在Rt△OBG中,∵ ,
.
解得,R=16.9 …………………4分
∴OG=11.9.
∵BD是⊙O的直径,
∴O是BD中点,
∴OG是△BCD的中位线.
∴DC=2OG=23.8. …………………5分
23.(1)证明:如图1连结
(2) …………………………………4分
(3)解:如图2
连结 ,
∴
又 ,
.
∵
为等边三角形………………………………..5分
在 中,
, ,
tan∠EAB的值为
25.解:(1)由
得
∴D(3,0) …………………………1分
(2)∵
∴顶点坐标
设抛物线向上平移h个单位,则得到 ,顶点坐标
∴平移后的抛物线:
……………………2分
当 时,
,
得
∴ A B ……………………3分
易证△AOC∽△COB
∴ OA•OB ……………………4分
∴ ,
∴平移后的抛物线: ………5分
(3)如图2, 由抛物线的解析式 可得
A(-2 ,0),B(8 ,0) C(0,4) , ……………………6分
过C、M作直线,连结CD,过M作MH垂直y轴于H,
则
∴
在Rt△COD中,CD= =AD
∴点C在⊙D上 ……………………7分
∴
∴
∴△CDM是直角三角形,
∴CD⊥CM
∴直线CM与⊙D相切 …………………………………8分
说明:以上各题的其它解法只要正确,请参照本评分标准给分。
§21.1二次根式(一)
一、1.C2.D3.D
二、1.,92.,3.4.1
三、1.50m2.(1)(2)>-1(3)(4)
§21.1二次根式枣改(旅册二)
一、1.C2.B3.D4.D
二、1.,2.13.;
三、1.或-3
2.(1);(2)5;(3);(4);(5);(6);
3.原式=
§21.2二次根式的乘除(一)
一、1.C2.D3.B
二、1.<2.(为整数)3.12s4.
三、1.(1)(2)(3)(4)–1082.10cm23、cm
§21.2二次根式的乘除(二)
一、1.C2.C3.D
二、1.>32.3.(1);(2);4.6
三、1.(1)(2)(3)52.(1)(2)(3)
3.,因此是倍.
§21.2二次根式的乘除(三)
一、1.D2.A3.B
二、1.2.,,3.14.
三、1.(1)(2)102.3.(,0)(0,);
§21.3二次根式的加减(一)
一、1.C2.A3.C
二、1.(答案不,如:、)2.<<3.1
三、1.(1)(2)(3)2(4)2.
§21.3二次根式的加减拆岩宏(二)
一、1.A2.A3.B4.A
二、1.12.,3.
三、1.(1)(2)(3)4(4)2
2.因为>45
所以王师傅的钢材不够用.
以下是为大家整理的2014九年级数学上册试题及答案的文章,供大家学习参考!
一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将每小题的答案填在下表中.
1.化简的值是()
A. ﹣3 B. 3 C. ±3 D. 9
2.下列运算正确的是()
3.下列图案中,既是轴对称图形又是中心对称图形的是()
4.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()
A. 14 B. 12 C. 12或14 D. 以上都不对
5.下列事件是必然发生事件的是()
A. 打开电视机,正在转播足球比赛
B. 小麦的亩产量一定为1000公斤
C. 在只装有5个红球的袋中摸出1球,是红球
D. 农历十五的晚上一定能看到圆月
6.若m为不等于零的实数,则关于x的方程x2+mx﹣m2=0的根的情况是()
A. 有两个相等的实数根 B. 有两个不等的实数根
C. 有两个实数根 D. 无实数根
7.下列事件是随机事件的是()
A. 在一个标准大气压下,水加热到100℃会沸腾
B. 购买一张福利彩票就中奖
C. 有一名运动员奔跑的速度是50米/秒
D. 在一个仅装有白球和黑球的袋中摸球,摸出红球
8.如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()
A. 是正方形 B. 是长方形 C. 是菱形 D. 以上答案都不对
9.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()
A. 50° B. 40° C. 30° D. 25°
10.已知⊙O的直径AB与弦AC的夹角为30°,过点C的切线PC与AB的延长线交于P.PC=5,则⊙O的半径为()
A.B.C. 5 D. 10
二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上.
11.式子中x的取值范围是_________.
12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是_________.
13.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于_________.
14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b=_________.
15.在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,5这5个数字.小芳从袋中任意摸出一个小球,球面数字的平方根是无理数的概率是_________.
16.一只蚂蚁在如图所示的树枝上寻觅食物,蚂蚁从点A出发,在每个岔路口都会随机地选择一条路径,则它获得食物的概率是_________.
17.如图,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,以边AC所在的直线为轴旋转一周得到一个圆锥,则这个圆锥的面积是_________cm2.
18.在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的深度为16cm,那么油面宽度AB是_________cm.
三、解答题:本大题共8小题,共66分.解答应写出文字说明,演算步骤或证明过程.
19.(8分)计算
(1)﹣×
(2)(6﹣2x)÷3.
20.(8分)解差戚下列御核方程:
(1)x2﹣4x﹣7=0
(2)(2x﹣1)2=(3﹣x)2.
21.(8分)如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.
(1)指出旋转中心,并求出旋转的度数;
(2)求出∠BAE的度数和AE的长.
22.(8分)袋中有大小相同的红球和白球共5个,任意摸出一红球的概率是.求:
(1)袋中红球、白球各有几个?
(2)任意摸出两个球(不放回)均为红球的概率是多少?
23.(8分)如图,AB为虚拆陵⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.求证:CD是⊙O的切线.
24.(8分)某商场销售一批服装,平均每天可售出20件,每件盈利40元,为了增加盈利,商场决定采取适当的降价措施,经调查发现.如果每件服装每降低1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,问每件服装应降价多少元?
25.(8分)从一副扑克牌中取出两组牌,分别是黑桃2、3、4、5和方块2、3、4、5,再分别将它们洗牌,然后从两组牌中各任意抽取一张.请用画树状图或列表的方法求抽出的两张牌的牌面数字之和等于6的概率是多少?
26.(10分)(2004•南京)如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD为矩形;
(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.
天津市五区县2013~2014学年度第一学期期末考试
九年级数学试卷参考答案
一、选择题(每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 B B C A C B B C D A
二、填空题(每小题3分,共24分)
11.且≠1; 12.十; 13.2;14.-1; 15.;16.;17.;18.48.
三、解答题
19.计算(每小题4分,共8分)
(1)原式= …………… 1分
=…………… 2分
=3-2 …………… 3分
=1 …………… 4分
(2)原式=
= …………… 1分
=…………… 2分
=…………… 3分
=
=…………… 4分
20.解下列方程.(每小题4分,共8分)
解:(1)…………… 1分
……………… 2分
…………… 3分
,…………… 4分
(2)解:…………… 1分
…………… 2分
…………… 3分
,…………… 4分
21.(8分)
解:(1)旋转中心为点A.
∵ ∠B=10°,∠ACB=20°
∴ ∠BAC=180°-10°-20°=150°…………… 2分
∵ △ABC与△ADE重合
∴ ∠BAC为旋转角,即旋转角为150°…………… 4分
(2)∵ △ABC与△ADE重合
∴ ∠EAD=∠BAC=150°,AE=AC,AB=AD
∴ ∠BAE=360°-∠EAD-∠BAC=60° …………… 6分
又∵ C为AD的中点,AB=4
∴
∴ AE=AC=2…………… 8分
∴ ∠BAE为60°,AE的长为2.
22.(本题8分)
解:(1)…………… 2分
5-2=3…………… 4分
(2) …………… 8分
答:袋中有红球为2个,白球为3个;任意摸出两个球均为红球的概率是.
23.(本题8分)
证明:连接OC …………… 1分
∵ AB是⊙O的直径
∴ ∠ACB=90°…………… 2分
∴ ∠A+∠ABC=90°…………… 3分
又 ∵ OB=OC
∴ ∠OBC=∠OCB …………… 4分
又 ∵ ∠DCB=∠A
∴ ∠A+∠ABC=∠DCB+∠OCB=90°…………… 6分
∴ OC⊥DC
∴ CD是⊙O的切线…………… 8分
24.(本题8分)
解:设每件服装应降价元
根据题意可得:
…………… 4分
整理得:…………… 5分
解得,…………… 7分
根据实际应取x=10……………8分
答:每件服装应降价10元.
25. (本题8分)
解:由列表得如下结果
第二次
第一次 2 3 4 5
2 (2,2) (2,3) (2,4) (2,5)
3 (3,2) (3,3) (3,4) (3,5)
4 (4,2) (4,3) (4,4) (4,5)
5 (5,2) (5,3) (5,4) (5,5)
由画树状图得如下结果
和为4,5,6,7,5,6,7,8,6,7,8,9,7,8,9,10.从列表或树状图可以看出,所有出现的结果相同,共有16种,其中和为6的有3种.
所以,…………… 8分
26. (本题10分)
解:(1)根据题意可得
…………… 1分
解得:
所以,当时,四边形APQD为矩形.…………… 2分
(2)①当⊙P与⊙R上下外切时有PQ⊥AB,即四边形APQD为矩形
∴ 此时,由(1)得t=4(s)…………… 3分
②当⊙P在BC上时,不相切.
③当⊙P与⊙Q都在CD上时,,
(Ⅰ)经过t s,⊙P与⊙Q相切,则有
……………5分
解得:
故经过,⊙P与⊙Q在CD上外切,且⊙P在⊙Q的右侧.
…………… 6分
(Ⅱ)经过t s,⊙P与⊙Q相切,则有
,……………8分
解得:.
故经过,⊙P与⊙Q在CD上外切,且⊙P在⊙Q的左侧.
…………… 9分
所以,当为或或时,⊙P与⊙Q外切.…… 10分