当前位置: 首页 > 所有学科 > 数学

初三上册数学期末考试试卷,九年级上册语文试卷电子版

  • 数学
  • 2024-03-30

初三上册数学期末考试试卷?若存在,求出点D的坐标;若不存在,说明理由; (3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标. 初三上期期末考试数学卷答案 三、解答题(本题共29分,其中第13、14、那么,初三上册数学期末考试试卷?一起来了解一下吧。

九年级期末成绩查询系统

有一个高效的数学复习方法,会让你的初三数学期末考试成绩突飞猛进的。以下是我为你整理的初三上期期末考试数学卷,希望对大家有帮助!

初三上期期末考试数学卷

一、 选择题(本题共32分,每题4分)

1. 已知 ,那么下列式子中一定成立的是( )

A. B. C. D.xy=6

2. 反比例函数y=-4x的图象在()

A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限

3. 如图,已知 ,那么添加下列一个条件后,仍无法判定

△ABC∽△ADE的是()

A. B. C. D.

4. 如图,在Rt△ABC中,∠C=90°,AB=5,AC=2,则cosA的

值是()

A.215 B.52 C.212 D.25

5. 同时投掷两枚硬币每次出现正面都向上的概率是( )

A. B. C. D.

6. 扇形的圆心角为60°,面积为6 ,则扇形的半径是( )

A.3 B.6 C.18 D.36

7. 已知二次函数 ( )的图象如图所示,有下列

结论:①abc>0;②a+b+c>0;③a-b+c<0;其中正确的结论有( )

A.0个 B.1个 C.2个 D.3个

8. 如图,在平面直角坐标系中,四边形OABC是菱形,点C的

坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y轴出发,

沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与

菱形OABC的两边分别交于点M,N(点M在点N的上方),

若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),

则能大致反映S与t的函数关系的图象是( )

二、 填空题(本题共16分,每题4分)

9. 若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21cm,则其余两边长的和为 .

10. 在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径作圆,则点C与⊙A的位置关系为 .

11. 已知二次函数 的图象与x轴有交点,则k的取值范围是 .

12. 某商店将每件进价8元的商品按每件10元出售,一天可以售出约100件,该商店想通过降低售价增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件,那么要想使销售利润最大,则需要将这种商品的售价降

低 元.

三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)

13.计算:

14.已知:如图,在△ABC中,∠ACB= ,过点C作CD⊥AB于点D,点E为AC上一点,过E点作AC的垂线,交CD的延长线于点F ,与AB交于点G.

求证:△ABC∽△FGD

15. 已知:如图,在△ABC中,CD⊥AB,sinA= ,AB=13,CD=12,

求AD的长和tanB的值.

16. 抛物线 与y轴交于(0,4)点.

(1) 求出m的值;并画出此抛物线的图象;

(2) 求此抛物线与x轴的交点坐标;

(3) 结合图象回答:x取什么值时,函数值y>0?

17.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请你在网格中画出一个△OCD,使它的顶点在格点上,且使△OCD与△OAB相似,相似比为2︰1.

18. 已知:如图,AB为半圆的直径,O为圆心,C为半圆上一点, OE⊥弦AC于点D,交⊙O于点E. 若AC=8cm,DE=2cm.

求OD的长.

四、解答题(本题共15分,每题5分)

19.如图,已知反比例函数y= 与一次函数y=-x+2的图象交于A、B两点,且点A的横坐标是-2.

(1)求出反比例函数的解析式;

(2)求△AOB的面积.

20. 如图,甲、乙两栋高楼,从甲楼顶部C点测得乙楼顶部A点的仰角 为30°,测得乙楼底部B点的俯角 为60°,乙楼AB高为120 米. 求甲、乙两栋高楼的水平距离BD为多少米?

21. 如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.

(1)求证:DB平分∠ADC;

(2)若BE=3,ED=6,求A B的长.

五、解答题(本题6分)

22. 端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏.

其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.

(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;

(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?

六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)

23.已知抛物线 的图象向上平移m个单位( )得到的新抛物线过点(1,8).

(1)求m的值,并将平移后的抛物线解析式写成 的形式;

(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象. 请写出这个图象对应的函数y的解析式,同时写出该函数在 ≤ 时对应的函数值y的取值范围;

(3)设一次函数 ,问是否存在正整数 使得(2)中函数的函数值 时,对应的x的值为 ,若存在,求出 的值;若不存在,说明理由.

24. 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.

(1)求证:AB•AF=CB•CD;

(2)已知AB=15 cm,BC=9 cm,P是射线DE上的动点.设DP=x cm( ),四边形BCDP的面积为y cm2.

①求y关于x的函数关系式;

②当x为何值时,△PBC的周长最小,并求出此时y的值.

25. 在平面直角坐标系中,抛物线 与 轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.

(1)求抛物线的解析式和顶点坐标;

(2)在 轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

初三上期期末考试数学卷答案

三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)

13.解:

= …………………………………………….4分

= …………………………………………..5分

14.证明:∵∠ACB= , ,

∴∠ACB=∠FDG= . ……………………………….1分

∵ EF⊥AC,

∴ ∠FEA=90°. ……………………………….2分

∴∠FEA=∠BCA.

∴EF∥BC. ……………………………………..3分

∴ ∠FGB=∠B. ………………………………….4分

∴△ABC∽△FGD ………………………………..5分

15.解:∵CD⊥AB,

∴∠CDA=90°……………………………………1分

∵ sinA=

∴ AC=15. ………………………………………..2分

∴AD=9. ……………………………………….3分

∴BD=4. …………………………………………4分

∴tanB= ………………………………5分

16.解:(1)由题意,得,m-1=4

解得,m=5. …………………………………1分

图略. …………………………………………………2分

(2)抛物线的解析式为y=-x2+4. …………………3分

由题意,得,-x2+4=0.

解得, ,

抛物线与x轴的交点坐标为(2,0),(-2,0)………………4分

(3)-2

17.图正确 …………………………………………….4分

18. 解:∵OE⊥弦AC,

∴AD= AC=4. …………………………1分

∴OA2=OD2+AD2 ……………………………..2分

∴OA2=(OA-2)2+16

解得,OA=5. ………………………………4分

∴OD=3 ………………………………5分

四、解答题(本题共15分,每题5分)

19.(1)解:由题意,得,-(-2)+2=4

A点坐标(-2,4) …………………………………………..1分

K=-8.

反比例函数解析式为y=- . ………………………………..2分

(2)由题意,得,B点坐标(4,-2)………………………………3分

一次函数y=-x+2与x轴的交点坐标M(2,0),与y轴的交点N(0,2)………4分

S△AOB=S△OMB+S△OMN+S△AON= =6 …………………..5分

20.解:作CE⊥AB于点E. …………………………………….1分

,且 ,

四边形 是矩形.

.

设CE=x

在 中, .

AE= ………………………………………..2分

AB=120 - …………………………………..3分

在 中, .

………………………………………..4分

解得,x=90 ………………………………………….5分

答:甲、乙两栋高楼的水平距离BD为90米.

21. (1)证明:∵ AB=BC

∴弧AB=弧BC ………………………………1分

∴∠BDC=∠ADB,

∴DB平分∠ADC……………………………………………2分

(2)解:由(1)可知弧AB=弧BC,∴∠BAC=∠ADB

∵∠ABE=∠ABD

∴△ABE∽△DBA……………………………………3分

∴ABBE=BDAB

∵BE=3,ED=6

∴BD=9……………………………………4分

∴AB2=BE•BD=3×9=27

∴AB=33……………………………………5分

五、解答题(本题6分)

22.解:(1)

A B C

C (A,C) (B,C) (C,C)

D (A,D) (B,D) (C,D)

……………………2分

可能出现的所有结果:(A,C)、(B,C)、(C,C)、(A,D)、(B,D)、(C,D)……………4分

(2)P(获八折优惠购买粽子)= ………………………………………………..6分

六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)

23.23.]解:(1)由题意可得

又点(1,8)在图象上

∴ m=2 ………………………………………………………1分

∴ ……………………………………………2分

(2) ………………………………….3分

当 时, ………………4分

(3)不存在 ………………………………………………5分

理由:当y=y3且对应的-1

∴ , ………………………………………6分]

且 得

∴ 不存在正整数n满足条件 ………………………………………7分

24. (1)证明:∵ , ,∴DE垂直平分AC,

∴ ,∠DFA=∠DFC =90°,∠DAF=∠DCF.

∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,

∴∠DCF=∠DAF=∠B.

∴△DCF∽△ABC. …………………………………………………………1分

∴ ,即 .

∴AB•AF=CB•CD. ………………………2分

(2)解:①∵AB=15,BC=9,∠ACB=90°,

∴ ,∴ .……………………3分

∴ ( ). ………………………………………4分

②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)知,点C关于直线DE的对称点是点A,∴PB+PC=PB+PA,故只要求PB+PA最小.

显然当P、A、B三点共线时PB+PA最小.

此时DP=DE,PB+PA=AB. …………………………5分

由(1), , ,得△DAF∽△ABC.

EF∥BC,得 ,EF= .

∴AF∶BC=AD∶AB,即6∶9=AD∶15.

∴AD=10.

Rt△ADF中,AD=10,AF=6,

∴DF=8.

∴ . …………………………………………6分

∴当 时,△PBC的周长最小,此时 . ………………………………………7分

25.解:(1)由题意,得

解得,

抛物线的解析式为y=-x2-2x+3 …………………………………1分

顶点C的坐标为(-1,4)………………………2分

(2)假设在y轴上存在满足条件的点D, 过点C作CE⊥y轴于点E.

由∠CDA=90°得,∠1+∠2=90°. 又∠2+∠3=90°,

∴∠3=∠1. 又∵∠CED=∠DOA =90°,

∴△CED ∽△DOA,

∴ .

设D(0,c),则 . …………3分

变形得 ,解之得 .

综合上述:在y轴上存在点D(0,3)或(0,1),

使△ACD是以AC为斜边的直角三角形. ………………………………… 4分

(3)①若点P在对称轴右侧(如图①),只能是△PCQ∽△CAH,得∠QCP=∠CAH.

延长CP交x轴于M,∴AM=CM, ∴AM2=CM2.

设M(m,0),则( m+3)2=42+(m+1)2,∴m=2,即M(2,0).

设直线CM的解析式为y=k1x+b1,

则 , 解之得 , .

∴直线CM的解析式 .…………………………………………… 5分

解得 , (舍去).

.

∴ .………………………………………………6分

②若点P在对称轴左侧(如图②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.

过A作CA的垂线交PC于点F,作FN⊥x轴于点N.

由△CFA∽△CAH得 ,

由△FNA∽△AHC得 .

∴ , 点F坐标为(-5,1).

设直线CF的解析式为y=k2x+b2,则 ,解之得 .

∴直线CF的解析式 . ……………………………………………7分

解得 , (舍去).

∴ . …………………………………8分

∴满足条件的点P坐标为 或

九年级数学卷子带答案

这篇九年级上册数学期末试题及答案浙教版的文章,是特地为大家整理的,希望对大家有所帮助!

一、选择题(每小题3分,共36分)

1.若 ,则( )

A.B. C.D.

2.在反比例函数 的图象的每一条曲线上, 都随着 的增大而增大,则 的值可以是()

A.B.0 C.1D.2

3.如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且 ,则∠ ()

A.100°B.110°C.120° D.135°

4.如图,一把遮阳伞撑开时母线的长是2米,底面半径为1米,则做这把遮阳伞需用布料的面积是()

A. 平方米B. 平方米 C. 平方米 D. 平方米

5.如图,⊙O的半径长为 10 cm,弦AB=16 cm,则圆心O到弦AB的距离为( )

A.4 cmB.5 cm C.6 cmD.7 cm

6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图所示.当气球内气压大于120 kPa时,气球将爆炸,为了安全起见,气体的体积应( )

A.不小于 m3 B.小于 m3C.不小于 m3 D.小于 m3

7.如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD相似的三角形有( )

A.3个B.2个C.1个D.0个

8.如图, 已知⊙O是△ABC的外接圆,AB=AC,D是直线BC上一点,直线AD交⊙O于点E,AE=9,DE=3,则AB的长等于 ( )

A.7 B. C.D.

9.如图,一只蚂蚁从 点出发,沿着扇形 的边缘匀速爬行一周,设蚂蚁的运动时间为 ,蚂蚁绕一圈到 点的距离为,则 关于 的函数图象大致为()

10.如图, 是两个半圆的直径,∠ACP=30°,若 ,

则 PQ的值为( )

A.B. C.D.

11.抛物线 的部分图象如图所示,若 ,则 的取值范围

是( )

A.B.C. 或D. 或

12.已知两个相似三角形的周长之和为24 cm,一组对应边分别为2.5 cm和3.5 cm,

则较大三角形的周长为( )

A.10 cm B.12 cmC.14 cmD.16 cm

二、填空题(每小题3分,共30分)

13.若 ,则 =_____________.

14.如图,点D在以AC为直径的⊙O上,如果∠BDC=20°,那么∠ACB=_________.

15.把抛物线 向左平移1个单位,然后向下平 移3个单位,则平移后抛物线的解析式为________.

16.如图是二次函数 图象的一部分,图象过点 (3,0),且对称轴为 ,给出下列四个结论:① ;② ;③ ;④ ,其中正确结论的序号是___________.(把你认为正确的序号都写上)

17 .如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2 cm,CD=4 cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.

18.已知△ABC内接于⊙O,且 ,⊙O的半径等于6 cm,O点到BC的距离OD等于

3 cm,则AC的长为___________.

19.如图,四边形 为正方形,图(1)是以AB为直径画半圆,阴影部分面积记为 ,图(2)是以O为圆心,OA长为半径画弧,阴影部分面积记为,则的大小关系为_________.

20.将一副三角板按 如图所示叠放,则△AOB与△DOC的面积之比等于_________.

21.如图所示的圆锥底面半径OA=2 cm,高PO=cm,一只蚂蚁由A点

出发绕侧面一周后回到A点处,则它爬行的最短路程为________.

22.双曲线 与 在第一象限内的图象如图所示,作一条平行于y

轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积

为_________.

三、解答题(共54分)

23. (6分)一段圆弧形公路弯道,圆弧的半径为2 km,弯道所对圆心角为10°,一辆汽车从此弯道上驶过,用时20 s,弯道有一块限 速警示牌,限速为40 km/h,问这辆汽车经过弯道时有没有超速?(π取3)

24.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交

BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.

25.(6分)已知二次函数 的图象经过点A(2,-3),B(-1,0).

(1)求二次函数的解析式;

(2)观察函数图象,要使该二次函数的图象与 轴只有一个交点,应把图象沿 轴向上

平移几个 单位?

26.(7分)已知抛物线 的部分图象如图所示.

(1)求 的值;

(2)分别求出抛物线的对称轴和 的值;

(3)写出当 时, 的取值范围.

27. (7分)如图,在△ABC中,AC=8 cm,BC=16 cm,点P从点A出发,沿着AC边向点C以1 cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2 cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?

28. (7 分)如图,点 是函数 ( )图象上 的一动点,过点 分别作

轴、 轴的垂线,垂足分别为 .

(1)当点 在曲线上运动时,四边形 的面积是否变化?若不变,请求出它的面积,若改变,请说明理由;

(2)若点 的坐标是( ),试求四边形 对角线的交点 的坐标;

(3)若点 是四边形 对角线的交点,随着点 在曲线

上运动,点 也跟着运动,试写出 与 之间的关系.

29.(8分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量 (千克)随销售单价 (元/千克)的变化而变化,具体关系式为: ,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为 (元),解答下列问题:

(1)求 与 的关系式;

(2)当 取何值时, 的值?

(3)如果公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少元?

30. (7分)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=60°,∠ACB=50°,请解答下列问题:

(1)求∠CAD的度数;

(2)设AD、BC相交于点E,AB、CD的延长线相交于点F,求∠AEC、∠AFC的度数;

(3)若AD=6,求图中阴影部分的面积.

期末测试题参考答案

一、选择题

1.A 解析:

2.D解析:若 都随着 的增大而增大,则 ,解得,只有D选项符合.

3.C解析: ∵,∴,∴ 弦 三等分半圆,∴ 弦 、 、 对的圆心角均为60°,∴ ∠ = .

4.B解析:圆锥的侧面积= ×1×2=2 (平方米).

5.C解析:如图,连接 ,过点 作 ⊥ 于点 .∵⊥ ,cm,

∴ cm.在Rt△OBC中,OB=10 cm,CB=8 cm,则 ,故选C.

6.C解析:设气球内气体的气压p(kPa)和气体体积V( )之间的反比例

函数关系式为 ,∵ 点(1.6,60)为反比例函数图象上的点,∴, .∴.

当p=120 kPa时,V=.故为了安全起见,气体的体积应不小于.

7.B解析: 由∠BAE=∠EAC, ∠ABC=∠AEC,得△ABD∽△AEC; 由∠BAE=

∠BCE,∠ABC=∠AEC,得△ABD∽△CED.共两个.

8.D解析:如图,连接BE,因为 ,所以∠ABC=∠C.因为∠C=∠AEB,所

以 ∠AEB=∠ABC.又∠BAD=∠EAB,所以△BAD∽△EAB,所以 ,

所以 .又 ,所以 .

9.C解析:蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离s不变,走另一条半径时,s随t的增大而减小,故选C.

10.C解析:如图,连接AP、BQ.∵ AC,BC是两个半圆的直径,∠ACP=30°,

∴ ∠APC=∠BQC=90°.设 ,在Rt△BCQ中, 同理,在Rt△APC中, ,

则 ,故选C.

11.B解析:∵ 抛物线的对称轴为直线 ,而抛物线与 轴的一个交点的横坐标为1,∴ 抛物线与 轴的另一个交点的横坐标为 ,根据图象知道若 ,则 ,故选B.

12.C解析:可知两个三角形的相似比等于 ,又周长之比等于相似比,所以设两个三角形的周长分别为 ,则 24,解得 ,所以较大三角形的周长为14 cm,故选C.

二、填空题

13. 解析:设 ,∴.

14.70° 解析:∵ ∠BDC=20°,∴ ∠A=20°.∵ AC为直径,∴ ∠ABC=90°,

∴ ∠ACB=70°.

15.

16.①③解析:因为图象与 轴有两个交点,所以 , ①正确:由图象可知开口向下,对称轴在 轴右侧,且与 轴的交点在 轴上方,所以 ,所以 , ②不正确;由图象的对称轴为 ,所以 ,即 ,故 , ③正确;由于当 时,对应的 值大于0,即 ,所以④不正确.所以正确的有①③.

17.解析:如图,过点O作OF⊥AD,已知∠B=∠C=90°, ∠AOD=90°,

所以 .又 ,所以 .

在△ABO和△OCD中,

所以△ ≌△ .所以 = .根据勾股定理得 .

因为△AOD是等腰直角三角形,所以 ,即圆心O到弦AD的距离是 .

18.cm或6 cm解析:分两种情况:

(1)假设∠BAC是锐角,则△ABC是锐角三角形,如图(1).∵ AB=AC,∴ 点A是优弧BC的中点.∵ OD⊥BC且 ,根据垂径定理推论可知,DO的延长线点A,连接BO,

∵,∴.

在Rt△ADB中, ,∴ (cm); (2)若∠BAC是钝角,则△ABC是钝角三角形,如图(2),添加辅助线及求出 .

在Rt△ADB中, ,∴

cm.

综上所述,cm或6 cm.

19.解析:设正方形OBCA的边长是1,则 ,

,故 .

20.1︰3解析:∵ ∠ABC=90°,∠DCB=90°,∴ AB∥CD,∴ △AOB∽△COD.又∵ AB︰CD=BC︰CD=1︰ ,

∴ △AOB与△DOC的面积之比等于1︰3.

21. cm解析:圆锥的侧面展开图如图所示,设∠ ,

由OA=2 cm,高PO=cm,得PA=6 cm,弧AA′=4cm,

则 ,解得 .作 ,由 ,

得∠ .

又 cm,所以 ,所以 (cm).

22.2解析:设直线AB与x轴交于D,则 ,所以 .

三、解答题

23.分析:先根据弧长公式计算出弯道的长度,再根据所用时间得出汽车的速度,再判断这辆汽车经过弯道时有没有超速.

解:∵,

∴ 汽车的速度为 (km/h),

∵ 60 km/h>40 km/h,

∴ 这辆汽车经过弯道时超速.

24.证明:(1)因为AB为⊙O的直径,所以∠ADB=90°,即AD⊥BC.

又因为AB=AC,所以D是BC的中点.

(2)因为AB为⊙O的直径, 所以∠AEB=90°.

因为∠ADB=90°,所以∠ADB=∠AEB.又∠C=∠C,所以△BEC∽△ADC.

25.解:(1)将点A(2,-3),B(-1,0)分别代入函数解析式,得

解得

所以二次函数解析式为 .

(2)由二次函数的顶点坐标公式,得顶点坐标为 ,作出函

数图象如图所示,可知要使该二次函数的图象与 轴只有一个交点,应

把图象沿 轴向上平移4个单位.

26.分析:已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.

顶点式: ( 是常数, ),其中( )

为顶点坐标.本题还考查了二次函数的对称轴 .

解:(1)由图象知此二次函数过点(1,0),(0,3),

将点的坐标代入函数解析式,得

解得(2)由(1)得函数解析式为 ,

即为 ,

所以抛物线的对称轴为 的值为4.

(3)当 时,由 ,解得 ,

即函数图象与 轴的交点坐标为( ),(1,0).

所以当 时, 的取值范围为 .

27.解:设经过t s△PQC和△ABC相似,由题意可知PA=t cm,CQ=2t cm.

(1)若PQ∥AB,则△PQC∽△ABC,

∴,∴,解得 .

(2)若 ,则△PQC∽△BAC,

∴,∴,解得 .

答: 经过4 s或s△PQC和△ABC相似.

28.分析:(1)由题意知四边形 是矩形,所以 ,而点 是函数 ( )上的一点,所以 ,即得 ,面积不变;

(2)由四边形 是矩形,而矩形对角线的交点是对角线的中点,所以由点 即可求得 的坐标;

(3)由(2)及点 的坐标( )可得点 的坐标,代入解析式即可得 与 之间的关系.

解:(1)由题意知四边形 是矩形,

∴.

又∵点是函数 ( )上的一点,

∴,即得 ,

∴ 四边形 的面积不变,为8. (2)∵ 四边形 是矩形,

∴ 对角线的交点是对角线的中点,即点 是 的中点.

∵ 点 的坐标是( ),

∴ 点 的坐标为( ).

(3)由(2)知,点 是 的中点,

∵ 点 的坐标为( ),

∴ 点 的坐标为( ).

又∵ 点 是函数 ( )图象上的一点,

∴ 代入函数解析式得: ,即 .

29.分析:(1)因为 ,

故 与 的关系式为 .

(2)用配方法化简函数关系式求出 的值即可.

(3)令 ,求出 的解即可.

解:(1) ,

∴与 的关系式为 .

(2) ,

∴ 当 时, 的值.

(3)当 时,可得方程 .

解这个方程,得 .

根据题意, 不合题意,应舍去,

∴ 当销售单价为75元时,可获得销售利润2 250元.

30.分析:(1)根据圆周角定理求出∠ADC、∠ACD的度数,由三角形内角和为180 即可

求得;

(2)根据三角形的内角和定理求出∠BAC,根据三角形的外角性质求出∠AEC、∠AFC;

(3)连接OC,过O作OQ⊥AC于Q,求出∠AOC的度数,高OQ和弦AC的长,再

由扇形和三角形的面积相减即可.

解:(1)∵ 弧AC=弧AC,∴ ∠ADC=∠ABC=60°.

∵ AD是⊙O的直径,∴ ∠ACD=90°,

∴.

(2)∵,

∴ ,

∴,

∴,

.

(3)如图,连接OC,过点O作 ⊥ 于点Q,

∵ ∠ =30°, =3,

∴.

由勾股定理得: ,

由垂径定理得: .

∵,

∴ 阴影部分的面积是 .

初三上数学期末考试题及答案

这篇关于《九年级数学上册期末试题》,是 无 特地为大家整理的,希望对大家有所帮助!

一、选择题:(本题有10小题,每小题3分,共30分)

下面每小题给出的四个选项中,只有一个是正确的,不选、多选、错选均不给分.

1.若反比例函数 的图象经过点(-5,2),则 的值为 ( ).

A.10B.-10 C.-7 D.7

2. 把一块直尺与一块三角板如图放置,若 ,则∠2的度数为()

A.120° B.135°C.145°D.150°

3.某兴趣小组有6名男生,4名女生,在该小组成员中选取1名学生作为组长,则选取女生为组长的概率是( )

A.B. C. D.

4.如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点

D,AC=6,则OD的长为()

A.2 B.3C.3.5D.4

5.将抛物线 向左平移2个单位后所得到的抛物线为()

A.B.C. D.

6.小明沿着坡比为1: 的山坡向上走了600m,则他升高了( )

A. m B.200 mC.300 mD.200m

7.如图,圆锥的底面半径 高 则这个圆锥的侧面积是()

A. B. C. D.

8.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()

A.12 m B.13.5 m C.15 m D.16.5 m

9.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是().

A.B.若MN与⊙O相切,则

C.l1和l2的距离为2D.若∠MON=90°,则MN与⊙O相切

10. 如图,AC=BC,点D是以线段AB为 弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F是线段AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是()

二、填空题:(本题有6小题,每小题4分,共24分)

11.若 ,则 .

12.如图,⊙O的半径为5,弦AB=8,动点M在弦AB上运动(可运动至A和B),设OM=x,则x的取值范围是 .

13.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线 上,点N在直线y=x+3上,设则抛物线y=﹣abx2+(a+b)x的顶点坐标是.

14.如图,甲楼AB的高度为20米,自甲楼楼顶A处,测得乙楼顶端C处的仰角为450,测得乙楼底部D处的俯角为300,则乙楼CD的高度是米.

15.如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE= ,CF= ,则正方形ABCD的面积为.

16.如图所示,点 、 、 在 轴上,且 ,分别过点 、 、 作 轴的平行线,与反比例函数 的图像分别交于点 、 、 ,分别过点 、 、 作 轴的平行线,分别与轴交于点 、 、 ,连接 、 、 ,那么图中阴影部分的面 积之 和为.

三、解答题:(本题有8个小题,共66分)

17.(本题6分)计算:

18.(本题6分)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD= ,坡长AB= ,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F= ,求AF的长度.

19.(本题6分)如图,已知一次函数 与反比例函数 的图象交于A、B两点.(1)求A、B两点的坐标;

(2)观察图象,请直接写出一次函数值小于反比例函数值的 的取值范围.

20.(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“2 0元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.

(1)该顾客至少可得到 元购物券,至多可得到 元购物券;

(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

21.(本题8分))如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E, ,延长DB到点F,使 ,连接AF.

(1)证明:△BDE∽△FDA;

(2)试判断直线AF与⊙O的位置关系,并给出证明.

22.(本题10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0

(1)求证:△ACD∽△BAC;

(2)求DC的长;

(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.

23.(本题10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数: ,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.

(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.

(2)当销售单价定为多少元时,每月可获得利润?每月的利润是多少?

(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?

(成本=进价×销售量)

24.(本题12分)抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点 D,当△BDC的面积时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

(全卷满分120分,考试时间120分钟)

题号 一 二 三 总分

1—10 11—16 17 18 19 20 21 22 23 24

得分

阅卷人

一、选择题:(本题有10小题,每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10

答案 B B A B D C C D B C

二、填空题:(本题有6小题,每小题4分,共24分)

11. 12. 3≤x≤513. ( , )

14. 15. 16.

三、解答题:(本题有8个小题,共66分)

17.(本题6分)计算:

解: =………………3分

= …………………………………………………1分

=…………………………………………………2分

18.(本题6分)解:过B作BE⊥AD于E,在Rt△ABE中,

∵∠BAE= ,∴∠ABE=

∴AE= AB (m) ………………………………1分

∴BE (m)…………………2分

∴在Rt△BEF中, ∠F= ,

∴EF=BE=30 ………………2分

∴AF=EF-AE=30- (m)

………………………………1分

19.(本题6分)

解:(1)由题意得: 解之得:或……………2分

∴A、B两点坐标分别为A 、B ……2分

(2) 的取值范围是: 或 ………………………………2分

20.(本题8分)

解:(1)10,50。

九年级上册语文试卷电子版

鲜花纷纷绽笑颜,捷报翩翩最灿烂。绽在心头芬芳绕,合家共同甜蜜笑。金榜题名无限好,不负十年多辛劳。继续扬帆勤钻研,书写明天新诗篇。祝你九年级数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的初三上数学期末试卷,希望你们喜欢。

初三上数学期末试题

一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只

有一项是符合题目要求的.)

1.点(一1,一2)所在的象限为

A.第一象限 B.第二象限 c.第三象限 D.第四象限

2.反比例函数y=kx的图象生经过点(1,-2),则k的值为

A.-1 B.-2 C.1 D.2

3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的

A.-4 B.0 C.1 D.3

4.在平面直角坐标系中,函数y= -x+1的图象经过

A.第一,二,三象眼 B.第二,三,四象限

C.第一,二,四象限 D.第一,三,四象限

5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为

A.80° B.60° C.50° D.40°

6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=

A.1 B.1.5 C.2

7.抛物线y=-3x2-x+4与坐标轴的交点的个数是

A.3 B.2 C.1 D.0

8.在同一平面直角坐标系中,函数y=mx+m与y=-mx (m≠0)的图象可能是

9.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB//x轴,交反比例函数y=-3x的 图象于点B,以AB为边作ABCD,其中C、D在x轴上,则SABCD为

A. 2 B. 3 C. 4 D. 5

10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是

A.相离 B.相切 C.相交 D.以上三种情况都有可能

11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒

12.如图,将抛物线y=(x—1)2的图象位于直线y=4以上的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为

A.43

第Ⅱ卷(非选择题共84分)

二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的横线上.)

13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_____________

14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为__________

15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C.则∠BAC等于____________度.

16.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为______________

17.如图,已知点A、C在反比例函数y=ax(a>0)的图象上,点B、D在反比例函数y=bx(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________________

18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转m2度:第3次从第2次停止的位置向相同的方向再次旋转m4度;第4次从第3次停止的位置向相同的方向再次旋转m8度……依此类推.例如【2,90】=38,则【2017, 180】=_______________

三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)

19.(本小题满分6分)

(1)计算sin245°+cos30°•tan60°

(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.

20.(本小题满分6分)

如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5.

求AB的长度.

21.(本小题满分6分)

如图,点(3,m)为直线AB上的点.求该点的坐标.

22.(本小题满分7分)

如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD.

(1)求证:△ABD≌△CDB;

(2)若∠DBE=37°,求∠ADC的度数.

23.(本小题满分7分)

某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?

24.(本小题满分8分)

如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,

cos48°≈0.67, tan48°≈l.ll, 3≈1.73)

25.(本小题满分8分)

如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.

(1)求边AB的长;

(2)求反比例函数的解析式和n的值;

(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长

26.(本小题满分9分)

如图,抛物线y=33(x2+3x一4)与x轴交于A、B两点,与y轴交于点C.

(1)求点A、点C的坐标,

(2)求点D到AC的距离。

初三数学上册试卷可打印

在每一次数学期末考试结束后,要学会反思,这样对于九年级的数学知识才会掌握熟练。以下是我为你整理的九年级数学上册期末试题,希望对大家有帮助!

九年级数学上册期末试题

一、选择题(本题共32分,每小题4分)

下面各题均有四个选项,其中只有一个是符合题意的.

1. 经过点P( , )的双曲线的解析式是( )

A. B.

C. D.

2. 如图所示,在△ABC中,DE//BC分别交AB、AC于点D、E,

AE=1,EC=2,那么AD与AB的比为

A. 1:2 B. 1:3

C. 1:4 D. 1:9

3. 一个袋子中装有6个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为

A. B. C. D.

4. 抛物线 的顶点坐标是

A. (-5,-2) B.

C. D. (-5,2)

5. △ABC在正方形网格纸中的位置如图所示,则 的值是

A. B.

C. D.

6. 要得到函数 的图象,应将函数 的图象

A.沿x 轴向左平移1个单位 B. 沿x 轴向右平移1个单位

C. 沿y 轴向上平移1个单位 D. 沿y 轴向下平移1个单位

7. 在平面直角坐标系中,如果⊙O是以原点为圆心,以10为半径的圆,那么点A(-6,8)

A. 在⊙O内 B. 在⊙O外

C. 在⊙O上 D. 不能确定

8.已知函数 (其中 )的图象如图所示,则函数 的图象可能正确的是

二、填空题(本题共16分,每小题4分)

9. 若 ,则锐角 = .

10. 如图所示,A、B、C为⊙O上的三个点, 若 ,

则∠AOB的度数为 .

11.如图所示,以点 为圆心的两个同心圆中,大圆的弦 是小圆的切线,

点 为切点,且 , ,连结 交小圆于点 ,

则扇形 的面积为 .

12. 如图所示,长为4 ,宽为3 的长方形木板在桌面上做

无滑动的翻滚(顺时针方向),木板上点A位置变化为 ,

由 此时长方形木板的边

与桌面成30°角,则点A翻滚到A2位置时所经过的路径总长度为 cm.

三、解答题(本题共30分,每小题5分)

13. 计算:

14. 已知:如图,在Rt△ABC中,

的正弦、余弦值.

15.已知二次函数 .

(1)在给定的直角坐标系中,画出这个函数图象的示意图;

(2)根据图象,写出当 时 的取值范围.

16. 已知:如图,AB是⊙O的弦,半径OC、OD分别交AB

于点E、F,且AE=BF.

求证:OE=OF

17.已知:如图,将正方形ABCD纸片折叠,使顶点A落在边CD上的

点P处(点P与C、D不重合),点B落在点Q处,折痕为EF,PQ与

BC交于点G.

求证:△PCG∽△EDP.

18.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余都相同),其中黄球有1个,白球有2个.第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画树状图的方法求两次都摸到黄球的概率.

四、解答题(本题共20分,每小题5分)

19.已知:如图,在平面直角坐标系xoy中,直线 与

x轴交于点A,与双曲线 在第一象限内交于点B,

BC垂直x轴于点C,OC=2AO.求双曲线 的解析式.

20.已知:如图,一架直升飞机在距地面450米上空的P点,

测得A地的俯角为 ,B地的俯角为 (点P和AB所在

的直线在同一垂直平面上),求A、B两地间的距离.

21.作图题(要求用直尺和圆规作图,不写出作法,

只保留作图痕迹,不要求写出证明过程).

已知:圆.

求作:一条线段,使它把已知圆分成面积相等的两部分.

22.已知:如图,△ABC内接于⊙O,且AB=AC=13,BC=24,

PA∥BC,割线PBD过圆心,交⊙O于另一个点D,联结CD.

⑴求证:PA是⊙O的切线;

⑵求⊙O的半径及CD的长.

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)

23. 已知:在 中, ,点 为 边的中点,点 在 上,连结 并延长到点 ,使 ,点 在线段 上,且 .

(1)如图1,当 时,

求证: ;

(2)如图2,当 时,

则线段 之间的数量关系为;

(3)在(2)的条件下,延长 到 ,使 ,

连接 ,若 ,求 的值.

24.已知 均为整数,直线 与三条抛物线 和 交点的个数分别是2,1,0,若

25.已知二次函数 .

(1)求它的对称轴与 轴交点D的坐标;

(2)将该抛物线沿它的对称轴向上平移,如图所示,设平移后的抛物线的顶点为 ,与 轴、 轴的交点分别为A、B、C三点,连结AC、BC,若∠ACB=90°.

①求此时抛物线的解析式;

②以AB为直径作圆,试判断直线CM与此圆的位置关系,并说明理由.

九年级数学上册期末试题答案

阅卷须知:

1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

以上就是初三上册数学期末考试试卷的全部内容,6. 如图2,△ABC,AB=12,AC=15,D为AB上一点,且AD= AB,若在AC上取一点E,使以A、D、E为顶点的三角形与 ABC相似,则AE等于 ( )A. 16 B. 10 C. 16或10 D. 以上答案都不对 二、。

猜你喜欢