数学试卷高一?试题 一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知是第二象限角,,则()A.B.C.D.2.集合,,则有()A.B.C.D.3.下列各组的两个向量共线的是()A.B.C.D.4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,那么,数学试卷高一?一起来了解一下吧。
迄今为止最全,最适用的高一数学试题(必修1、4)
(特别适合按14523顺序的省份)
必修1 第一章集合测试
一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)
1.下列选项中元素的全体可以组成集合的是 ()
A.学校篮球水平较高的学生 B.校园中长的高大的树木
C.2007年所有的欧盟国家 D.中国经济发达的城市
2.方程组的解构成的集合是 ()
A. B.C.(1,1) D.
3.已知集合A={a,b,c},下列可以作为集合A的子集的是 ()
A. a B. {a,c}C. {a,e}D.{a,b,c,d}
4.下列图形中,表示的是 ()
5.下列表述正确的是()
A. B. C. D.
6、设集合A={x|x参加自由泳的运动员},B={x|x参加蛙泳的运动员},对于“既参
加自由泳又参加蛙泳的运动员”用集合运算表示为 ()
A.A∩B B.AB C.A∪B D.AB
7.集合A={x} ,B={} ,C={}
又则有 ()
A.(a+b) A B. (a+b) B C.(a+b)CD. (a+b)A、B、C任一个8.集合A={1,2,x},集合B={2,4,5},若={1,2,3,4,5},则x=()
A. 1B. 3C. 4 D. 5
9.满足条件{1,2,3}M{1,2,3,4,5,6}的集合M的个数是 ( )
A.8 B.7 C.6 D. 5
10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,
6 },那么集合 { 2 ,7 ,8}是()
A.B. C.D.
11.设集合, ( )
A. B. C. D.
12. 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ()
A.0 B.0 或1 C.1 D.不能确定
二、填空题(共4小题,每题4分,把答案填在题中横线上)
13.用描述法表示被3除余1的集合 .
14.用适当的符号填空:
(1); (2){1,2,3} N;
(3){1} ;(4)0 .
15.含有三个实数的集合既可表示成,又可表示成,则.
16.已知集合,,那么集合,,.
三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)
17. 已知集合,集合,若,求实数a的取值集合.
18. 已知集合,集合,若满足 ,求实数a的值.
19. 已知方程.
(1)若方程的解集只有一个元素,求实数a,b满足的关系式;
(2)若方程的解集有两个元素分别为1,3,求实数a,b的值
20. 已知集合,,,若满足,求实数a的取值范围.
必修1 函数的性质
一、选择题:
1.在区间(0,+∞)上不是增函数的函数是 ()
A.y=2x+1 B.y=3x2+1C.y= D.y=2x2+x+1
2.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函
数,则f(1)等于 ()
A.-7 B.1 C.17 D.25
3.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()
A.(3,8)B.(-7,-2) C.(-2,3) D.(0,5)
4.函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是 ()
A.(0,) B.( ,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)
5.函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内 ()
A.至少有一实根B.至多有一实根
C.没有实根 D.必有唯一的实根
6.若满足,则的值是()
5 6
7.若集合,且,则实数的集合()
8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)
=f(5-t),那么下列式子一定成立的是 ()
A.f(-1)<f(9)<f(13) B.f(13)<f(9)<f(-1)
C.f(9)<f(-1)<f(13) D.f(13)<f(-1)<f(9)
9.函数的递增区间依次是()
A. B.
C. D
10.若函数在区间上是减函数,则实数的取值范围 ( )
A.a≤3 B.a≥-3 C.a≤5 D.a≥3
11. 函数,则( )
12.已知定义在上的偶函数满足,且在区间上是减函数则 ()
A. B.
C. D.
.二、填空题:
13.函数y=(x-1)-2的减区间是____.
14.函数f(x)=2x2-mx+3,当x∈-2,+时是增函数,当x∈-,-2时是减函
数,则f(1)=。
高一数学第一章测试题(卷)
班级 姓名学号成绩
一、选择:
1、下列说法正确的个数是( )
①全国的主要河流组成一个集合
② 1, , ,2.5, 是一个有5个元素的集合
③集合 表示的是空集
④集合 , 与集合 , 是同一集合
⑤某班教室里的书籍组成一个有限集合
A.2B.1 C.5 D.4
2、以全体非负实数为元素的集合的一个正确表示是( )
A. ≥ B. >0C.D.
3、已知集合M= ≤()
A.B. C.D.
4、集合M= 的子集个数是()
A.32B.31C.16 D.15
5、给出下列命题,正确的是()
A.设全集U=R,A=则CUA=
B.设全集U=Z,S=N,A=N+,则CSA=0
C.U= , A=则CUA=
D.U= ,A=则CUA=
6、已知集合M= 则M∩P=( )
A.x=3,y=-1B.(3,-1) C. ,-1D. ,-1
7、设集合M=,则下列说法正确的是()
A.M= B.M= C.-1∈MD.
8、已知不等式 >a (a>0) 的解集是<-2或x>2 ,
则不等式 ≤a-3的解集为 ( )
A. <-1或x>1B.RC.D. <x<1
9、下列命题中,是简单命题的是()
A.60能被4和5整除B.平行四边形不是梯形
C.-2≥-1D.3是一个大于0的整数
10、用数学符号表达“x不大于y的实际含义是 ()
A.x≠yB.x<y且x=y C.x<yD.x<y或x=y
11、设A、B是两个集合,则下列是真命题的是( )
A.若A B,则A∩B=B
B.若A B,则A∪B=B
C.若A∩B,则A B
D.若A∪B=B则B A
12、已知P:(x-1) (x+3)≥0, ≤0下列说法正确的是( )
A.P是q的既非充分又非必要条件
B.P是q的充要条件
C.P是q的充分非必要条件
二、填空
13、用 , , ,填空
0.5 QN R ,2
-1,2 2,-1
14、用阴影部分表示M∩N∩CUS
UUUU
15、不等式4x2-4x+1>0的解集是
16、给出下列不等式:
① >0② <0 ③ <0 ④ <0
⑤ <0 其中与不等式 <0有相同解集的不等式的序号是
三、解答题
17、设∪= x∈N 0<x≤10 ,A= 1、2、4、5、9 ,B= 4、6、7、8、10
C= 3、5、7 ,求A∩B,A∪B,A∩B∩C,A∪B∪C,(CuA)∪(CuB)
18、解不等式
⑴x+2 >⑵ ≤0
19、解不等式-4<- x2-x- <-2
20、已知A=xx-1 ≥a ,B= x -6<x<4 ,且A∩B=,求实数a的取值范围。
高一数学上册圆的方程测试题
班级 学号 姓名
[基础练习]
1.已知曲线 关于直线 对称,则( )
A. B. C. D.
2.直线 截圆 所得的劣弧所对的圆心角为( )
A. B. C. D.
3.过点(2,1)的直线中,被圆 截得的弦为最长的直线方程为( )
A. B. C. D.
4.过点 的直线 将圆 分成两段弧。当其中的劣弧最短时, 的方程为( ) A. B. C. D.
5.圆 关于直线 对称的曲线方程是( )
A. B.
C. D.
6.若圆 和圆 关于直线 对称,则直线 的方程是( )
A. B. C. D.
7.圆 在轴上截得的弦长为
8.过点 的'直线被圆 截得的弦长为 ,则此直线的方程为
9.圆 与圆 的公共弦长是
10.已知 是圆 内异于圆心的一点,则直线 与此圆的交点个数是
11.圆 上到直线 的距离为 的点共有 个
12.圆 与 轴相交于A、B两点,圆心为M,若 ,则 的值等于 ,
13.设直线 将圆 平分,且不过第三象限,则 的斜率的取值范围是 。
14.过圆 与直线 的两个交点,且面积最小的圆的方程是 。
15.过已知点 作圆 : 的割线ABC,求(1) 的值;(2)弦 的中点 的轨迹方程。
高一数学期中质量分析发言,高一数学期中考试题很多人还不知道,现在让我们一起来看看吧!
1.集合 ,则
2.在△ABC中,如果(a+b+c)(b+c-a)=3bc,则角A等于___ __ __.
3.已知数列是等差数列,且 ,则 等于___ __ __.
4. 已知向量 , ,则 .
5. 若 ,则 =_ _____.
数学高一期中试题下册6.已知两点 、 分别在直线 的异侧,则 的取值范围是__ _.
7.函数 最小正周期为 .
8.点A为周长等于3的圆周上的一个定点,若在该圆周上随机
取一点B,则劣弧 AB的长度小于1的概率为 .
9.为了解高中生用电脑输入汉字的水平,随机抽取了部分学生进行每分钟输入汉字个数测试,下图是根据抽样测试后的数据绘制的频率分布直方图,其中每分钟输入汉字个数的范围是[50,150],样本数据分组为[50,70),[70,90), [90,110),[110,130),[130,150],已知样本中每分钟输入汉字个数小于90的人数是36,则样本中每分钟输入汉字个数大于或等于70个并且小于130个的人数是 .
10.运行如图所示程序框图后,输出的结果是 .
11. 已知等比数列 为递增数列,且 , ,则 _ _____.
12.已知点O为 的外心,且 ,则 ___ __ __.
13.已知函数 若 ,则实数a的取值范围是 .
14. 若等差数列 的首项为 公差为 ,前 项的和为 ,则数列 为等差数列,且通项为 .类似地,若各项均为正数的等比数列 的首项为 ,公比为 ,前 项的积为 ,则数列 为等比数列,通项为 .
二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算骤.)
15.解不等式
16.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.
(1)求该总体的'平均数;
(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
17.设 的三个内角 所对的边分别为 ,
且满足 .
(Ⅰ)求角 的大小;
(Ⅱ)若 ,试求 的最小值.
18. 已知函数 ( ).
(Ⅰ)当 时,求函数 的最小正周期和图象的对称轴方程;
(Ⅱ)当 时,在 的条件下,求 的值.
19. 某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数 与时间x(小时)的关系为 ,其中a与气象有关的参数,且 ,若用每天 的最大值为当天的综合污染指数,并记作 .
(1)令 ,求t的取值范围;
(2)求函数 ;
(3)市政府规定,每天的综合污染指数不得超过2,试问目前市中心的综合污染指数是多少?是否超标?
20. 已知数列 ,
设 ,数列 。
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
一.选择题
1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()
A.-1 B.0
C.3 D.不确定
[答案]B
[解析]因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.
∴x1+x2+x3=0.
2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内()
A.至少有一实数根 B.至多有一实数根
C.没有实数根 D.有惟一实数根
[答案]D
[解析]∵f(x)为单调减函数,
x∈[a,b]且f(a)?f(b)<0,
∴f(x)在[a,b]内有惟一实根x=0.
3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)()
A.在区间1e,1,(1,e)内均有零点
B.在区间1e,1,(1,e)内均无零点
C.在区间1e,1内有零点;在区间(1,e)内无零点
D.在区间1e,1内无零点,在区间(1,e)内有零点
[答案]D
[解析]∵f(x)=13x-lnx(x>0),
∴f(e)=13e-1<0,
f(1)=13>0,f(1e)=13e+1>0,
∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.
4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是()
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
[答案]C
[解析]∵f(0)=-1<0,f(1)=e-1>0,
即f(0)f(1)<0,
∴由零点定理知,该函数零点在区间(0,1)内.
5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是()
A.m≤1 B.0C.m>1 D.0[答案]B
[解析]设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有()
A.0个 B.1个
C.2个 D.3个
[答案]A
[解析]令f(x)=0得,(x-1)ln(x-2)x-3=0,
∴x-1=0或ln(x-2)=0,∴x=1或x=3,
∵x=1时,ln(x-2)无意义,
x=3时,分母为零,
∴1和3都不是f(x)的零点,∴f(x)无零点,故选A.
7.函数y=3x-1x2的一个零点是()
A.-1 B.1
C.(-1,0) D.(1,0)
[答案]B
[点评]要准确掌握概念,“零点”是一个数,不是一个点.
8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为()
A.至多有一个 B.有一个或两个
C.有且仅有一个 D.一个也没有
[答案]C
[解析]若a=0,则b≠0,此时f(x)=bx+c为单调函数,
∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点;
若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0,
∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.
9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间为()
A.0,14 B.14,12
C.12,1 D.(1,2)
[答案]B
[解析]∵f14=214-log1214=42-2<0,f12=2-1>0,f(x)在x>0时连续,∴选B.
10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
[答案]C
[解析]令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C.
二、填空题
11.方程2x=x3精确到0.1的一个近似解是________.
[答案]1.4
12.方程ex-x-2=0在实数范围内的解有________个.
[答案]2
三、解答题
13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01).
[解析]令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-12<0,f(0)=1>0,
说明方程f(x)=0在区间(-1,0)内有一个零点.
取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5).
再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75).
同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625).
由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77.
14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2.
[解析]令f(x)=(x-2)(x-5)-1
∵f(2)=f(5)=-1<0,且f(0)=9>0.
f(6)=3>0.
∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2.
15.求函数y=x3-2x2-x+2的零点,并画出它的简图.
[解析]因为x3-2x2-x+2=x2(x-2)-(x-2)
=(x-2)(x2-1)=(x-2)(x-1)(x+1),
所以函数的零点为-1,1,2.
3个零点把x轴分成4个区间:
(-∞,-1],[-1,1],[1,2],[2,+∞].
在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表:
x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …
y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 …
在直角坐标系内描点连线,这个函数的图象如图所示.
16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1)
[解析]原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0.
取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下
端点或中点横坐标 端点或中点的函数值 定区间
a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0]
x0=-1+02=-0.5
f(x0)=3.375>0 [-1,-0.5]
x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75]
x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875]
x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875]
∵|-0.875-(-0.9375)|=0.0625<0.1,
∴原方程在(-1,0)内精确到0.1的近似解为-0.9.
17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围.
[解析]∵f(x)=log3(ax2-x+a)有零点,
∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解.
当a=0时,x=-1.
当a≠0时,若ax2-x+a-1=0有解,
则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0,
解得1-22≤a≤1+22且a≠0.
综上所述,1-22≤a≤1+22.
18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).
[解析]设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.
取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5).
再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375).
同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375).
由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3.
高一数学下册期末试卷及答案相关文章:
★高一数学下册期末试卷及答案
★高一数学下学期期末试卷及参考答案
★高一年级数学试卷下册期末
★高一数学期末考试知识点总结
★2020高一期末数学复习计划汇总精选
★高一数学考试反思5篇
★高一期末考试数学备考方法
★高一期末数学复习计划5篇
★2020初一暑假作业参考答案历史(人教版)
★高一数学学习方法和技巧大全
以上就是数学试卷高一的全部内容,一.选择题 1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()A.-1 B.0 C.3 D.不确定 [答案]B [解析]因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点。