目录圆锥曲线一二三定义 数学圆锥曲线二级结论 数学圆锥曲线题目及答案 做圆锥曲线题的秘诀 数学圆锥曲线知识点总结
抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(隐睁x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圆:体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭喊携辩圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公郑缺式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体 体积计算公式椭圆 的 长半径*短半径*π*高
http://wenku.baidu.com/view/ade32ccf0508763231121250.html
圆锥曲线包括椭圆,双曲线,抛物线
1.
椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的销孙距离)的动点的轨迹叫做椭圆。即:{P|
|PF1|+|PF2|=2a,
(2a>|F1F2|)}。
2.
双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,
(2a<|F1F2|)}。
3.
抛物线:到一个定点和一条枣启定直线的距离相等的动点轨迹叫做抛物线。
4.
圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0
1时为双曲线。
·圆锥曲线的参数方程和直角坐标方程:
1)直线
参数方程:x=X+tcosθ
y=Y+tsinθ
(t为参数)
直角坐标:y=ax+b
2)圆
参数方程:x=X+rcosθ
y=Y+rsinθ
(θ为参数
)
直角坐标:x^2+y^2=r^2
(r
为半径)
3)椭圆
参数方程:x=X+acosθ
y=Y+bsinθ
(θ为参数
)
直角坐标(中心为原点):x^2/a^2
+
y^2/b^2
=
1
4)双曲线
参数方程:x=X+asecθ
y=Y+btanθ
(θ为参数
)
直角坐标(中心为原点):x^2/a^2
-
y^2/b^2
=
1
(开口方向为x轴)
y^2/a^2
-
x^2/b^2
=
1
(开口方向为y轴)
5)抛物线
参数方程:x=2pt^2
y=2pt
(t为参数)
直角坐标:y=ax^2+bx+c
(开口方向为y轴,
a>0
)
x=ay^2+by+c
(开亏岩链口方向为x轴,
a>0
)
圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-e·cosθ)
其中e表示离心率,p为焦点到准线的距离。
一.椭圆
1.焦半缺芹森径公式 ,P为椭圆上任意一点,则│PF1│= a + eXo
│PF2│= a - eXo
(F1 F2分别为其左,右焦点)首中
2.通径长= 2b²/a
3.焦点三角形面积公式
S⊿PF1F2 = b²tan(θ/2) (θ为∠F1PF2)
(这个可能有点难理解,不过结合第一定义可以较快的推,双曲线的也是同样方法)
4.(左)准点Q(自己取的名字方便叙述,准线与X轴的焦点)
过左焦点F1的任意一条线与椭圆交与A ,B 那么一定有:X轴平分∠AQB
(在右边也是一样)
二.双曲线
1.通径就不说了2.焦半径公式(有8个,很难打符号的,不过可以根据极坐标方程来直接解答,比焦半径公式还快一些)
3.焦点三角形面积公式
S⊿PF1F2 =b²cot(θ/2) (左右支都是它)
三.抛物线
y²=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点
1.│AB│=X1 + X2 + p =2p/sin²θ(θ为直线AB的倾斜角)
2. Y1*Y2 = -p², X1*X2 = p²/4
3.1/│FA│ +1/│FB│=2/p
4.结论:以AB 为直径的圆与抛物线的准线线切
5.焦半径公式:│FA│= X1 + p/2 = p/(1-cosθ)
四. 通性伏亩直线与圆锥曲线 y= F(x) 相交于A ,B,则
│AB│=√(1+k²) * [√Δ/│a│]
高中数学圆锥曲线公式总结
1.焦半径公式 ,P为椭圆上任意一点,则│PF1│= a + eXo
│PF2│= a - eXo
(F1 F2分别为其左,右焦点)
2.通径长 = 2b2/a
3.焦点三角形面积公式
S⊿PF1F2 = b2tan(θ/2) (θ为∠F1PF2)
(这个可能有点难理解,不过结合第一定义可以较快的推,双曲线的也是同样方法)
4.(左)准点Q (自己取的名字方便叙述,准线与X轴的焦点)
过左焦点F1的任意一条线与椭圆交与A ,B 那么一定有:X轴平分∠AQB
(在右边也是一样)
圆锥曲线公式二.双曲线
1.通径就不说了 2.焦半径公式(有8个,很难打符号的,不过可以根据极坐标方程来直接解答,比焦半径公式还快一些闭睁)
3.焦点三角形面积公式
S⊿PF1F2 =b2cot(θ/2) (左右支都是它)
圆锥曲线公式三.抛物线
y2=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点
1.│AB│=X1 + X2 + p =2p/sin2θ (θ为直线AB的倾斜角)
2. Y1*Y2 = -p2 , X1*X2 = p2/4
3.1/│FA│ + 1/│FB│ = 2/p
4.结论:以AB 为直径的圆与抛物线的准线线切
5.焦半径公式:│FA│= X1 + p/2 = p/(1-cosθ)
圆锥曲线公式四. 通性
直线与圆锥曲线 y= F(x) 相交于A ,B,则
│AB│=√(1+k2) * [√Δ/│a│]
圆锥曲线包旅态哪括椭圆(圆为椭圆的特例拆码),抛物线,双曲线。
圆锥曲线(二次曲线)的统一定义:到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。当e>1时,为双曲线的一支,当e=1时,为抛物线,当0