当前位置: 首页 > 所有学科 > 数学

初中数学所有知识点归纳,初中数学知识点大纲

  • 数学
  • 2023-05-11
目录
  • 初中数学所有重点知识
  • 初一到初三数学知识点
  • 初一数学重点知识归纳
  • 初中数学全部知识点总结
  • 初一到初三数学笔记整理大全

  • 初中数学所有重点知识

    初中马上要升入高中,数学是考试拉分科目之一,那么初中数学必考知识点有哪些呢。以下是由我为大家整理的“初中数学必考知识点总结”,仅供参考,欢迎大家阅读。

    初中数学必租绝考知识点总结

    一元二次方程

    学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 —— 一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

    本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

    “降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

    (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

    (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次弊纯姿方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

    (3)在介绍因式分解法时,首先裤腊通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

    “实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

    旋转

    学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

    “旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

    “中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。

    拓展阅读:提升数学成绩的方法

    该记的记,该背的背,不要以为理解了就行

    因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。

    对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。

    学能力的培养是深化学习的必由之路

    在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

    我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

    自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

    因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

    自信才能自强

    在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍微难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

    初一到初三数学知识点

    初中生学习数学要特别注意知识点的总结,下面为大家总结了初中数学重点知识点,仅供大家参考。

    有理数

    1.有理数的加法运算

    同号两数来相加,绝对值加不变号。

    异号相加大减小,大数决定和符号。

    互为相反数求和,结果是零须记好。

    “大”减“小”是指绝对值的大小。

    2.有理数的减法运算

    减正等于加负,减负等于加正。

    有理数的乘法运算符号法则。

    同号得正异号负,一项为零积是零。

    3.有理数混合运算的四种运算技巧

    转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

    凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

    分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

    巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

    整式的加减

    1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

    去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

    2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

    合并同类项:

    (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

    (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

    (3)合并同类项步骤:

    a.准确的找出同类项。

    b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

    c.写出合并后的结果。

    实数

    1.平方根

    平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

    2.立方根

    如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

    立方根性质

    ①在实数范围内,任何实数的立方根只有一个

    ②在实数范围内,负数不能开平方,但可以开立方。

    ③0的立方根是0

    3.实数

    实数,是有理数和无理数的总称。实数具有封闭性、有做凯序性、传递性、稠密性、完备性等。

    分式方程的解法

    1.一般解法:去分母法,即方程两边同乘以最简公分母。

    2.特殊解法:换元法。

    3.验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

    说明:解分式方程,一般先考虑换元法,再考虑去分母法。

    全等三角形的判定定理

    1.边边边:三边对应相等的两个三角形全等。

    2.边角边:两边和它们的夹角对应相等的两个三角形全等。

    3.角边角:两角和它们的夹边对应相等的两个三角形全等。

    4.角角边:两角和其中一个角的对边对应相等的两个三角形全等。

    5.斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。

    图形的初步认识

    1.几何图形:即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。

    2.平面图形:平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形等。

    3.立体图形:是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。

    4.展开图:有些立体图形是有一些平面图形围成的,将它们的表面适当剪开,可以展成平面图形,这样的平面图形称为相应立体图形的展开图。

    5.点,线,面,体

    (1)图形是由点,线肢早,面构成的。

    (2)线与线相交得点,面与面相交得线。

    (3)点动成线,线动成面,面动成体。

    一元一次方程

    1.定义:

    一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值历胡雀叫做方程式的解。

    2.解一元一次方程的步骤

    ①去分母:把系数化成整数。

    ②去括号

    ③移项:把等式一边的某项变号后移到另一边。

    ④合并同类项

    ⑤系数化为1

    初一数学重点知识归纳

    初中数学只要内容是函数的学习,其中重点是二次函数的解法。二次函数在数学中占有一定地位,甚至以后的数学学习中都会遇到二次函数问题,因此牢牢掌握二次函数的解法对于大家以后数学学习十分有帮助。现在将初中数学重要知识点整理如下,供大家学习。

    目录

    有理数

    代数式

    分式的运算

    方程与方程组

    有理数

    1、数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

    2、绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

    3、有理数的运算:

    加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

    减法:减去一个数,等于加上这个数的相反数。

    乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

    除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

    乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

    混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

    平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

    立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

    4、实数:

    ①实数分有理数和无理数。

    ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相逗漏反数,倒数,绝对值的意义完全一样。

    ③每一个实数都可以在数轴上的一个点来表示。

    代数式

    1、合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

    2、整式与分式,整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式姿指掘中,次数最高的项的次数叫做这个多项式的次数。

    3、整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)(A/B)N=AN/BN 除法一样。

    整式的乘法:①单项式与单项式相乘,把他们的系数,迹核相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

    公式两条:平方差公式/完全平方公式

    整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

    分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

    方法:提公因式法、运用公式法、分组分解法、十字相乘法。

    分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

    分式的运算

    1、乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

    2、除法:除以一个分式等于乘以这个分式的倒数。

    3、加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

    4、分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

    方程与不等式

    方程与方程组

    1、一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

    2、解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

    3、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

    4、二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

    5、一元二次方程的二次函数的关系

    关于二次函数的解法公式其实很简单,关键是我们如何应用这些公式来解答实际问题,这有待于大家在以后学习过程中勤加练习,总结经验了。

    相关文章:

    1. 初中数学基础知识点总结

    2. 初中数学知识点整理:

    3. 初一数学基础知识有哪些?

    4. 初中数学的常考知识点20条

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();

    初中数学全部知识点总结

    初中数学知识点总结:

    知识点1:一元二次方程的基本概念

    1、一元二次方程3x2+5x-2=0的常数项是-2。

    2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

    3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

    4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

    知识点2:直角坐标系与点的位置

    1、直角坐标系中,点A(3,0)在y轴上。

    2、直角坐标系中,x轴上的任意点的横坐标为0。

    3、直角坐标系中,点A(1,1)在第一象限。

    4、直角坐标系巧基衫中,点A(-2,3)在第四象限。

    5、直角坐锋纳标系中,点A(-2,1)在第二象限。

    知识点3:已知自变量的值求函数值

    1、当x=2时,函数y=的值为1。

    2、当x=3时,函数y=的值为1。

    3、当x=-1时,函数y=的值为1。

    知识点4:基本函数的概念及性质

    1、函数y=-8x是一次函数。

    2、函数y=4x+1是正比例函数。

    3、函数是反比例函数。

    4、抛物线y=-3(x-2)2-5的开口向下。

    5、抛物线y=4(x-3)2-10的对称轴是x=3。

    6、抛物线的顶点坐标是(1,2)。

    7、反比例函数的图象在第一、三象限。

    知识点5:数据的平均数中位数与众数

    1、数据13,10,12,8,7的平均数是10。

    2、数据3,4,2,4,4的众数是4。

    3、数据1,2,3,4,5的中位数是3。

    知识点6:特殊三角函数值

    1、cos30°=1。

    2、sin260°+cos260°=1。

    3、2sin30°+tan45°=2。

    4、tan45°=1。

    5、cos60°+sin30°=1。

    知识点7:圆的基本性质

    1、半圆或直径所对的圆周角是直角。

    2、任意一个三角形一定有一个外接圆。

    3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

    4、在同圆或等圆中,相等的圆心角所对的弧相等。

    5、同弧所对的圆周角等于圆心角的一半。

    6、同圆或等圆的半径相等。

    7、过三个点一定可以作一个圆。

    8、长度相等的两条弧是等弧。

    9、在同圆或等圆中,相等的圆心角所对的弧相等。

    10、经过圆心平分弦的直径垂直于弦。

    知识点8:直线与圆的位置关系

    1、直线与圆有唯一公共点时,叫做直线与圆相切。

    2、三角形的外接圆的圆心叫做三角形的外心。

    3、弦切角等于所夹的弧所对的圆心角。

    4、三角形的内切圆的圆心叫做三角形的内心。

    5、垂直于半径的直线必为圆的切线。

    6、过半径的外孝腔端点并且垂直于半径的直线是圆的切线。

    7、垂直于半径的直线是圆的切线。

    8、圆的切线垂直于过切点的半径。

    初一到初三数学笔记整理大全

    初中生学会整理数学知识点并总结,能大大提高自己学习的效率。下面是由我为大家整理的“初中数学知识点详细归纳总结”,仅供参考,欢迎大家阅读本文。

    初中数学知识点详细归纳总结

    一、基本知识

    1、数与代数

    有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数。

    数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数早好大于0,负数小于0,正数大于负数。

    绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

    有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

    减法:减去一个数,等于加上这个数的相反数。

    乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

    除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

    乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

    混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

    2、实数 无理数:无限不循环小数叫无理数

    平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

    立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

    实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴陆桐铅上的一个点来表示。

    3、代数式

    代数式:单独一个数或者一个字母也是代数式。

    合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

    4、整式与分式

    整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

    整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

    幂的运算:am+an=a(m+n)

    (am)n=amn

    (a/b)n=an/bn 除法一样。

    整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

    公式两条:平方差公式/完全平方公式

    整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数轮稿一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

    分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

    方法:提公因式法、运用公式法、分组分解法、十字相乘法。

    分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

    分式的运算:

    乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

    除法:除以一个分式等于乘以这个分式的倒数。

    加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

    分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

    b、方程与不等式

    1、方程与方程组

    一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

    解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

    二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

    二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

    适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

    二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

    解二元一次方程组的方法:代入消元法/加减消元法。

    一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

    1)一元二次方程的二次函数的关系

    大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点。也就是该方程的解了

    2)一元二次方程的解法

    大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

    (1)配方法

    利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

    (2)分解因式法

    提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

    (3)公式法

    这方法也可以是在解一元二次方程的万能方法了,方程的根x1={-b+√[b2-4ac)]}/2a,x2={-b-√[b2-4ac)]}/2a

    3)解一元二次方程的步骤:

    (1)配方法的步骤:

    先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

    (2)分解因式法的步骤:

    把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

    (3)公式法

    就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

    4)韦达定理

    利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

    也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

    5)一元一次方程根的情况

    利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:

    i当△>0时,一元二次方程有2个不相等的实数根;

    ii当△=0时,一元二次方程有2个相同的实数根;

    iii当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

    2、不等式与不等式组

    不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

    不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

    一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

    一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

    一元一次不等式的符号方向:

    在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

    在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:a>b,a+c>b+c

    在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:a>b,a-c>b-c

    在不等式中,如果乘以同一个正数,不等号不改向;例如:a>b,a*c>b*c(c>0)

    在不等式中,如果乘以同一个负数,不等号改向;例如:a>b,a*c

    如果不等式乘以0,那么不等号改为等号

    所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

    3、函数

    变量:因变量,自变量。

    在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

    一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。

    一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数y=kx的图象是经过原点的一条直线。③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。

    二、空间与图形

    a、图形的认识

    1、点,线,面

    点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

    展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。

    截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

    视图:主视图,左视图,俯视图。

    多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

    弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

    2、角

    线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

    比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

    角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

    角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

    平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

    垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

    垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

    垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

    垂直平分线定理:

    性质定理:在垂直平分线上的点到该线段两端点的距离相等;

    判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

    角平分线:把一个角平分的射线叫该角的角平分线。

    定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点。

    性质定理:角平分线上的点到该角两边的距离相等。

    判定定理:到角的两边距离相等的点在该角的角平分线上。

    正方形:一组邻边相等的矩形是正方形。

    性质:正方形具有平行四边形、菱形、矩形的一切性质。

    判定:1、对角线相等的菱形2、邻边相等的矩形。

    拓展阅读:初中数学的学习方法

    1、按部就班,环环相扣

    数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。

    2、概念记清,基础夯实

    千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。

    3、适当做题,巧做为主

    学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要"埋下头去做题,抬起头来想题",在做题中关注思路、方法、技巧,要"苦做"更要"巧做".考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。

    4、记录错题,避免再犯

    建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考或者在平时考试当中是"分分必争",一分也失不得。这样复习时,这个错题本也就成了宝贵的复习资料。

    5、集中兵力,攻下弱点

    一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成"瘸腿".

    猜你喜欢